Your browser doesn't support javascript.
loading
Molecular Insights into the Accelerated Sprouting of and Apical Dominance Release in Potato Tubers Subjected to Post-Harvest Heat Stress.
Liu, Tengfei; Wu, Qiaoyu; Zhou, Shuai; Xia, Junhui; Yin, Wang; Deng, Lujun; Song, Botao; He, Tianjiu.
Afiliação
  • Liu T; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
  • Wu Q; Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China.
  • Zhou S; Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China.
  • Xia J; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Potato Engineering and Technology Research Center of Hubei Province, College of Horticulture and Forestry S
  • Yin W; Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China.
  • Deng L; Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China.
  • Song B; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Potato Engineering and Technology Research Center of Hubei Province, College of Horticulture and Forestry S
  • He T; Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article em En | MEDLINE | ID: mdl-38338975
ABSTRACT
Climate change-induced heat stress (HS) increasingly threatens potato (Solanum tuberosum L.) production by impacting tuberization and causing the premature sprouting of tubers grown during the hot season. However, the effects of post-harvest HS on tuber sprouting have yet to be explored. This study aims to investigate the effects of post-harvest HS on tuber sprouting and to explore the underlying transcriptomic changes in apical bud meristems. The results show that post-harvest HS facilitates potato tuber sprouting and negates apical dominance. A meticulous transcriptomic profiling of apical bud meristems unearthed a spectrum of differentially expressed genes (DEGs) activated in response to HS. During the heightened sprouting activity that occurred at 15-18 days of HS, the pathways associated with starch metabolism, photomorphogenesis, and circadian rhythm were predominantly suppressed, while those governing chromosome organization, steroid biosynthesis, and transcription factors were markedly enhanced. The critical DEGs encompassed the enzymes pivotal for starch metabolism, the genes central to gibberellin and brassinosteroid biosynthesis, and influential developmental transcription factors, such as SHORT VEGETATIVE PHASE, ASYMMETRIC LEAVES 1, SHOOT MERISTEMLESS, and MONOPTEROS. These findings suggest that HS orchestrates tuber sprouting through nuanced alterations in gene expression within the meristematic tissues, specifically influencing chromatin organization, hormonal biosynthesis pathways, and the transcription factors presiding over meristem fate determination. The present study provides novel insights into the intricate molecular mechanisms whereby post-harvest HS influences tuber sprouting. The findings have important implications for developing strategies to mitigate HS-induced tuber sprouting in the context of climate change.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solanum tuberosum Idioma: En Revista: Int J Mol Sci / Int. j. mol. sci. (Online) / International journal of molecular sciences (Online) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solanum tuberosum Idioma: En Revista: Int J Mol Sci / Int. j. mol. sci. (Online) / International journal of molecular sciences (Online) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China