Your browser doesn't support javascript.
loading
Valorization of organic carbon in primary sludge via semi-continuous dark fermentation: First step to establish a wastewater biorefinery.
Shylaja Prakash, Nikhil; Maurer, Peter; Horn, Harald; Hille-Reichel, Andrea.
Afiliação
  • Shylaja Prakash N; DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany. Electronic address: Nikhil.prakash@partner.kit.edu.
  • Maurer P; University of Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Sewage Treatment Plant for Research and Education, Bandtäle 1, Stuttgart 70569, Germany.
  • Horn H; DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, Karlsruhe 76
  • Hille-Reichel A; DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, Karlsruhe 76
Bioresour Technol ; 397: 130467, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38373504
ABSTRACT
In this study, lab-scale, bench-scale, and pilot-scale experiments were carried out to optimize short-chain fatty acids production from primary sludge. Batch tests showed the requirement of short retention times and semi-continuous operation mode showed a plateau of maximum daily productivity at 36-hours hydraulic retention time with minimal methanation. Optimization from pH 5 to pH 10 at 36 h-hydraulic retention time under long-term semi-continuous operating mode revealed that production of short-chain fatty acids was pH dependent and highest yields could be achieved at pH 7 by establishing optimum redox conditions for fermentation. Pilot-scale experiments at 32 °C showed that daily productivity (3.1 g∙Lreactor-1∙dHRT-1) and yields (150 mg∙gVS-1; OLR = 21 gVS∙Lreactor-1∙dHRT-1; pH 7) of short-chain fatty acids could be significantly improved, specifically for acetic and propionic acids. From these results, a robust dark fermentation step for recovery of valuable products from the solids treatment step in a biorefinery can be achieved.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Águas Residuárias Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Águas Residuárias Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article