In Situ Grown Coordination-Supramolecular Layer Holding 3D Charged Channels for Highly Reversible Zn Anodes.
Nano Lett
; 24(14): 4124-4131, 2024 Apr 10.
Article
em En
| MEDLINE
| ID: mdl-38483552
ABSTRACT
Dynamic reversible noncovalent interactions make supramolecular framework (SF) structures flexible and designable. A three-dimensional (3D) growth of such frameworks is beneficial to improve the structure stability while maintaining unique properties. Here, through the ionic interaction of the polyoxometalate cluster, coordination of zinc ions with cationic terpyridine, and hydrogen bonding of grafted carboxyl groups, the construction of a 3D SF at a well-crystallized state is realized. The framework can grow in situ on the Zn surface, further extending laterally into a full covering without defects. Relying on the dissolution and the postcoordination effects, the 3D SF layer is used as an artificial solid electrolyte interphase to improve the Zn-anode performance. The uniformly distributed clusters within nanosized pores create a negatively charged nanochannel, accelerating zinc ion transfer and homogenizing zinc deposition. The 3D SF/Zn symmetric cells demonstrate high stability for over 3000 h at a current density of 5 mA cm-2.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Ano de publicação:
2024
Tipo de documento:
Article