Highly sensitive mid-infrared methane remote sensor using a deep neural network filter.
Opt Express
; 32(7): 11849-11862, 2024 Mar 25.
Article
em En
| MEDLINE
| ID: mdl-38571023
ABSTRACT
A novel mid-infrared methane remote sensor integrated on a movable platform based on a 3.291-µm interband cascade laser (ICL) and wavelength modulation spectroscopy (WMS) is proposed. A transmitting-receiving coaxial, visualized optical layout is employed to minimize laser energy loss. Using a hollow retro-reflector remotely deployed as a cooperative target, the atmospheric average methane concentration over a 100-meter optical range is measured with high sensitivity. A deep neural network (DNN) filter is used for second harmonic (2f) signal denoising to compensate for the performance shortcomings of conventional filtering. Allan deviation analysis indicated that after applying the DNN filter, the limit of detection (LOD) of methane was 86.62 ppb with an average time of 1 s, decreasing to 12.03 ppb with an average time of 229 s, which is a significant promotion compared to similar work reported. The high sensitivity and stability of the proposed sensor are shown through a 24-hour continuous monitoring experiment of atmospheric methane conducted outdoors, providing a new solution for high-sensitivity remote sensing of atmospheric methane.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Opt Express
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article