Your browser doesn't support javascript.
loading
Solution-processable low-voltage carbon nanotube field-effect transistors with high-krelaxor ferroelectric polymer gate insulator.
Yang, Dongseong; Moon, Yina; Han, Nara; Lee, Minwoo; Beak, Jeongwoo; Lee, Seung-Hoon; Kim, Dong-Yu.
Afiliação
  • Yang D; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
  • Moon Y; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
  • Han N; Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
  • Lee M; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
  • Beak J; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
  • Lee SH; Division of Advanced Materials Engineering, Center for Advanced Materials and Parts of Powder, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31080, Republic of Korea.
  • Kim DY; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Nanotechnology ; 35(29)2024 May 01.
Article em En | MEDLINE | ID: mdl-38608317
ABSTRACT
Achieving energy-efficient and high-performance field-effect transistors (FETs) is one of the most important goals for future electronic devices. This paper reports semiconducting single-walled carbon nanotube FETs (s-SWNT-FETs) with an optimized high-krelaxor ferroelectric insulator P(VDF-TrFE-CFE) thickness for low-voltage operation. The s-SWNT-FETs with an optimized thickness (∼800 nm) of the high-kinsulator exhibited the highest average mobility of 14.4 cm2V-1s-1at the drain voltage (ID) of 1 V, with a high current on/off ratio (Ion/off>105). The optimized device performance resulted from the suppressed gate leakage current (IG) and a sufficiently large capacitance (>50 nF cm-2) of the insulating layer. Despite the extremely high capacitance (>100 nF cm-2) of the insulating layer, an insufficient thickness (<450 nm) induces a highIG, leading to reducedIDand mobility of s-SWNT-FETs. Conversely, an overly thick insulator (>1200 nm) cannot introduce sufficient capacitance, resulting in limited device performance. The large capacitance and sufficient breakdown voltage of the insulating layer with an appropriate thickness significantly improved p-type performance. However, a reduced n-type performance was observed owing to the increased electron trap density caused by fluorine proportional to the insulator thickness. Hence, precise control of the insulator thickness is crucial for achieving low-voltage operation with enhanced s-SWNT-FET performance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2024 Tipo de documento: Article