Numerical investigation and optimal design of capillary barrier cover with passive gas collection pipes on the performance at limiting landfill gas emissions.
Sci Total Environ
; 927: 172421, 2024 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-38614334
ABSTRACT
Relying solely on soil properties may not fully ensure the performance of capillary barrier covers at limiting landfill gas (LFG) emissions. This study proposed to install passive gas collection pipes in the coarse-grained soil layers of capillary barrier covers to enhance their performance at limiting LFG emissions. First, the LFG generation rate of municipal solid waste and its influencing factors were analyzed based on empirical formulas. This information provided necessary bottom boundary conditions for the analyses of LFG transport through capillary barrier covers with passive gas collection pipes (CBCPPs). Then, numerical simulations were conducted to investigate the LFG transport properties through CBCPPs and reveal relevant influencing factors. Finally, practical suggestions were proposed to optimize the design of CBCPPs. The results indicated that the maximum whole-site LFG generation rate occurred at the end of landfilling operation. The gas collection efficiency (E) of CBCPPs was mainly controlled by the ratio of the intrinsic permeability between the coarse- and fine-grained soil (K2/K1) and the laying spacing between gas collection pipes (D). E increased as K2/K1 increased but decreased as D increased. An empirical expression for estimating E based on K2/K1 and D was proposed. In practice, CBCPPs were supposed to be constructed once the landfilling operation finished. It is best to select the fine- and coarse-grained soils with K2/K1 exceeding 10,000 to construct CBCPPs.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Sci Total Environ
Ano de publicação:
2024
Tipo de documento:
Article