Your browser doesn't support javascript.
loading
The G1/S transition in mammalian stem cells in vivo is autonomously regulated by cell size.
bioRxiv ; 2024 Apr 11.
Article em En | MEDLINE | ID: mdl-38645246
ABSTRACT
Cell growth and division must be coordinated to maintain a stable cell size, but how this coordination is implemented in multicellular tissues remains unclear. In unicellular eukaryotes, autonomous cell size control mechanisms couple cell growth and division with little extracellular input. However, in multicellular tissues we do not know if autonomous cell size control mechanisms operate the same way or whether cell growth and cell cycle progression are separately controlled by cell-extrinsic signals. Here, we address this question by tracking single epidermal stem cells growing in adult mice. We find that a cell-autonomous size control mechanism, dependent on the RB pathway, sets the timing of S phase entry based on the cell's current size. Cell-extrinsic variations in the cellular microenvironment affect cell growth rates but not this autonomous coupling. Our work reassesses long-standing models of cell cycle regulation within complex metazoan tissues and identifies cell-autonomous size control as a critical mechanism regulating cell divisions in vivo and thereby a major contributor to stem cell heterogeneity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article