Your browser doesn't support javascript.
loading
Cadmium phytoremediation potential of Houttuynia cordata: Insights from growth, uptake, and rhizosphere mechanisms.
Zhang, QingQing; Jiang, Cheng'Ai; Jiang, LuoYan; Qiu, RongLiang; Wei, ZeBin; Wu, QiTang.
Afiliação
  • Zhang Q; College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China.
  • Jiang C; College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China. Electronic address: 648071922@qq.com.
  • Jiang L; College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China.
  • Qiu R; College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China.
  • Wei Z; College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China.
  • Wu Q; College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China.
Ecotoxicol Environ Saf ; 278: 116417, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38701655
ABSTRACT
Cadmium (Cd) pollutes 7.0 % of China's land area. This study examined the potential of Houttuynia cordata for Cd phytoremediation because of its ability to accumulate Cd in its growth matrix. H. cordata were planted in plastic pots filled with paddy field soils having low (LCd), medium (MCd), and high (HCd) Cd levels of 0.19, 0.69, and 2.91 mg/kg, respectively. After six months of growth, harvested plant parts were evaluated for Cd uptake and tolerance mechanisms. Metabolomics and metagenomics approaches were employed to investigate the soil rhizosphere mechanism. Results showed that the average plant biomass increased as soil Cd increased. The biomass Cd contents surpassed the allowable Cd limits for food (≤ 0.2 mg/kg) and medicinal uses (≤ 0.3 mg/kg). Cd contents were higher in H. cordata roots (30.59-86.27 mg/kg) than in other plant parts (0.63-2.90 mg/kg), with significantly increasing values as Cd soil level increased. Phenolic acids, lipids, amino acids and derivatives, organic acids, and alkaloids comprised the majority (69 in MCd vs HCd and 73 % in LCd vs HCd) of the shared upregulated metabolites. In addition, 13 metabolites specific to H. cordata root exudates were significantly increased. The top two principal metabolic pathways were arginine and proline metabolism, and beta-alanine metabolism. H. cordata increased the abundance of Firmicutes and Glomeromycota across all three Cd levels, and also stimulated the growth of Patescibacteria, Rozellomycota, and Claroideoglomus in HCd. Accordingly, H. cordata demonstrated potential for remediation of Cd-contaminated soils, and safety measures for its production and food use must be highly considered.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Biodegradação Ambiental / Cádmio / Houttuynia / Rizosfera País/Região como assunto: Asia Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Biodegradação Ambiental / Cádmio / Houttuynia / Rizosfera País/Região como assunto: Asia Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article