Your browser doesn't support javascript.
loading
Tuning the double lipidation of salmon calcitonin to introduce a pore-like membrane translocation mechanism.
Lund, Philip M; Kristensen, Kasper; Larsen, Nanna W; Knuhtsen, Astrid; Hansen, Morten B; Hjørringgaard, Claudia U; Eriksen, Anne Z; Urquhart, Andrew J; Mortensen, Kim I; Simonsen, Jens B; Andresen, Thomas L; Larsen, Jannik B.
Afiliação
  • Lund PM; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Kristensen K; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Larsen NW; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Knuhtsen A; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Hansen MB; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Hjørringgaard CU; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Eriksen AZ; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Urquhart AJ; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Mortensen KI; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Simonsen JB; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Andresen TL; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. Electronic address: tlan@dtu.dk.
  • Larsen JB; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. Electronic address: jannla@dtu.dk.
J Colloid Interface Sci ; 669: 198-210, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38713958
ABSTRACT
A widespread strategy to increase the transport of therapeutic peptides across cellular membranes has been to attach lipid moieties to the peptide backbone (lipidation) to enhance their intrinsic membrane interaction. Efforts in vitro and in vivo investigating the correlation between lipidation characteristics and peptide membrane translocation efficiency have traditionally relied on end-point read-out assays and trial-and-error-based optimization strategies. Consequently, the molecular details of how therapeutic peptide lipidation affects it's membrane permeation and translocation mechanisms remain unresolved. Here we employed salmon calcitonin as a model therapeutic peptide and synthesized nine double lipidated analogs with varying lipid chain lengths. We used single giant unilamellar vesicle (GUV) calcein influx time-lapse fluorescence microscopy to determine how tuning the lipidation length can lead to an All-or-None GUV filling mechanism, indicative of a peptide mediated pore formation. Finally, we used a GUVs-containing-inner-GUVs assay to demonstrate that only peptide analogs capable of inducing pore formation show efficient membrane translocation. Our data provided the first mechanistic details on how therapeutic peptide lipidation affects their membrane perturbation mechanism and demonstrated that fine-tuning lipidation parameters could induce an intrinsic pore-forming capability. These insights and the microscopy based workflow introduced for investigating structure-function relations could be pivotal for optimizing future peptide design strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Calcitonina / Lipossomas Unilamelares Limite: Animals Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Calcitonina / Lipossomas Unilamelares Limite: Animals Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca