Your browser doesn't support javascript.
loading
Precisely Programmable Degradation and Drug Release Profiles in Triblock Copolyether Hydrogels with Cleavable Acetal Pendants.
Baek, Jinsu; Song, Nanhee; Yoo, Byungwoo; Lee, Dongwon; Kim, Byeong-Su.
Afiliação
  • Baek J; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
  • Song N; Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea.
  • Yoo B; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
  • Lee D; Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea.
  • Kim BS; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
J Am Chem Soc ; 146(20): 13836-13845, 2024 May 22.
Article em En | MEDLINE | ID: mdl-38717976
ABSTRACT
Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Liberação Controlada de Fármacos Limite: Animals Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Liberação Controlada de Fármacos Limite: Animals Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article