Your browser doesn't support javascript.
loading
Engineering and evaluation of FXa bypassing agents that restore hemostasis following Apixaban associated bleeding.
Jankowski, Wojciech; Surov, Stepan S; Hernandez, Nancy E; Rawal, Atul; Battistel, Marcos; Freedberg, Daron; Ovanesov, Mikhail V; Sauna, Zuben E.
Afiliação
  • Jankowski W; Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Surov SS; Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Hernandez NE; Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Rawal A; Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Battistel M; Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Freedberg D; Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Ovanesov MV; Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
  • Sauna ZE; Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA. Zuben.Sauna@fda.hhs.gov.
Nat Commun ; 15(1): 3912, 2024 May 09.
Article em En | MEDLINE | ID: mdl-38724509
ABSTRACT
Direct oral anticoagulants (DOACs) targeting activated factor Xa (FXa) are used to prevent or treat thromboembolic disorders. DOACs reversibly bind to FXa and inhibit its enzymatic activity. However, DOAC treatment carries the risk of anticoagulant-associated bleeding. Currently, only one specific agent, andexanet alfa, is approved to reverse the anticoagulant effects of FXa-targeting DOACs (FXaDOACs) and control life-threatening bleeding. However, because of its mechanism of action, andexanet alfa requires a cumbersome dosing schedule, and its use is associated with the risk of thrombosis. Here, we present the computational design, engineering, and evaluation of FXa-variants that exhibit anticoagulation reversal activity in the presence of FXaDOACs. Our designs demonstrate low DOAC binding affinity, retain FXa-enzymatic activity and reduce the DOAC-associated bleeding by restoring hemostasis in mice treated with apixaban. Importantly, the FXaDOACs reversal agents we designed, unlike andexanet alfa, do not inhibit TFPI, and consequently, may have a safer thrombogenic profile.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazóis / Piridonas / Inibidores do Fator Xa / Hemorragia / Hemostasia Limite: Animals / Humans / Male Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazóis / Piridonas / Inibidores do Fator Xa / Hemorragia / Hemostasia Limite: Animals / Humans / Male Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos