Your browser doesn't support javascript.
loading
Selective Oxidation of sp-Bonded Carbon in Graphdiyne/Carbon Nanotubes Heterostructures to Form Dominant Epoxy Groups for Two-Electron Oxygen Reduction.
Lu, Tiantian; Sun, Mingzi; Wang, Fengmei; Chen, Shan; Li, Youzeng; Chen, Jialei; Liao, Xuelong; Sun, Xiaoting; Liu, Ying; Wang, Fei; Huang, Bolong; Wang, Huan.
Afiliação
  • Lu T; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Sun M; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 000000, Hong Kong SAR, China.
  • Wang F; Department of Materials Science, Fudan University, Shanghai 200433, China.
  • Chen S; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Li Y; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Chen J; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Liao X; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Sun X; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Liu Y; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Wang F; Department of Materials Science, Fudan University, Shanghai 200433, China.
  • Huang B; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 000000, Hong Kong SAR, China.
  • Wang H; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
ACS Nano ; 18(23): 15035-15045, 2024 Jun 11.
Article em En | MEDLINE | ID: mdl-38796777
ABSTRACT
Two-electron oxygen reduction reaction (2e- ORR) is of great significance to H2O2 production and reversible nonalkaline Zn-air batteries (ZABs). Multiple oxygen-containing sp2-bonded nanocarbons have been developed as electrocatalysts for 2e- ORR, but they still suffer from poor activity and stability due to the limited and mixed active sites at the edges as well as hydrophilic character. Herein, graphdiyne (GDY) with rich sp-C bonds is studied for enhanced 2e- ORR. First, computational studies show that GDY has a favorable formation energy for producing five-membered epoxy ring-dominated groups, which is selective toward the 2e- ORR pathway. Then based on the difference in chemical activity of sp-C bonds in GDY and sp2-C bonds in CNTs, we experimentally achieved conductive and hydrophobic carbon nanotubes (CNTs) covering O-modified GDY (CNTs/GDY-O) through a mild oxidation treatment combined with an in situ CNTs growth approach. Consequently, the CNTs/GDY-O exhibits an average Faraday efficiency of 91.8% toward H2O2 production and record stability over 330 h in neutral media. As a cathode electrocatalyst, it greatly extends the lifetime of 2e- nonalkaline ZABs at both room and subzero temperatures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China