Your browser doesn't support javascript.
loading
Discovery Phase Agrochemical Predictive Safety Assessment Using High Content In Vitro Data to Estimate an In Vivo Toxicity Point of Departure.
Bianchi, Enrica; Costa, Eduardo; Harrill, Joshua; Deford, Paul; LaRocca, Jessica; Chen, Wei; Sutake, Zachary; Lehman, Audrey; Pappas-Garton, Anthony; Sherer, Eric; Moreillon, Connor; Sriram, Shreedharan; Dhroso, Andi; Johnson, Kamin.
Afiliação
  • Bianchi E; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Costa E; Corteva Agriscience, Sao Paulo 05314, Brazil.
  • Harrill J; Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park ,North Carolina 27709, United States.
  • Deford P; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • LaRocca J; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Chen W; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Sutake Z; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Lehman A; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Pappas-Garton A; Corteva Agriscience, Johnston ,Iowa 50131, United States.
  • Sherer E; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Moreillon C; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Sriram S; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Dhroso A; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
  • Johnson K; Corteva Agriscience, Indianapolis ,Indiana 46268, United States.
J Agric Food Chem ; 72(30): 17099-17120, 2024 Jul 31.
Article em En | MEDLINE | ID: mdl-39033510
ABSTRACT
Utilization of in vitro (cellular) techniques, like Cell Painting and transcriptomics, could provide powerful tools for agrochemical candidate sorting and selection in the discovery process. However, using these models generates challenges translating in vitro concentrations to the corresponding in vivo exposures. Physiologically based pharmacokinetic (PBPK) modeling provides a framework for quantitative in vitro to in vivo extrapolation (IVIVE). We tested whether in vivo (rat liver) transcriptomic and apical points of departure (PODs) could be accurately predicted from in vitro (rat hepatocyte or human HepaRG) transcriptomic PODs or HepaRG Cell Painting PODs using PBPK modeling. We compared two PBPK models, the ADMET predictor and the httk R package, and found httk to predict the in vivo PODs more accurately. Our findings suggest that a rat liver apical and transcriptomic POD can be estimated utilizing a combination of in vitro transcriptome-based PODs coupled with PBPK modeling for IVIVE. Thus, high content in vitro data can be translated with modest accuracy to in vivo models of ultimate regulatory importance to help select agrochemical analogs in early stage discovery program.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Agroquímicos Limite: Animals / Humans / Male Idioma: En Revista: J Agric Food Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Agroquímicos Limite: Animals / Humans / Male Idioma: En Revista: J Agric Food Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos