Your browser doesn't support javascript.
loading
Fifteen day repeat air: liquid Interface air-only exposures can cause respiratory epithelium injury in MucilAir nasal respiratory epithelial cells that parallels chemically induced cytotoxicity.
Recio, Leslie; Samuel, Raymond; Elmore, Susan A; Scaglione, Jamie.
Afiliação
  • Recio L; ScitoVation LLC, Investigative Toxicology, Durham, NC, USA.
  • Samuel R; ScitoVation LLC, Investigative Toxicology, Durham, NC, USA.
  • Elmore SA; Elmorepathology, LLC, Chapel Hill, NC, USA.
  • Scaglione J; ScitoVation LLC, Investigative Toxicology, Durham, NC, USA.
Toxicol Mech Methods ; : 1-7, 2024 Jul 30.
Article em En | MEDLINE | ID: mdl-39077774
ABSTRACT
New Approach Methodologies (NAMs) are being widely used to reduce, refine, and replace, animal use in studying toxicology. For respiratory toxicology, this includes in silico and in vitro alternatives using airliquid interface (ALI) exposures to replace traditional in vivo inhalation studies. In previous studies using 1,3-dichloropropene (1,3-DCP), a 5-day 4 h repeat exposures of MucilAir™ nasal cell culture models caused, dose-dependent cytotoxicity, depletion of GSH, changes in differential gene expression and histopathological transitions in cellular morphology from pseudostratified columnar epithelium to squamous epithelium. In this report we attempted to extend these studies using 15-day 1,3-DCP 4 h exposures to using MucilAir™ nasal cultures as outlined by an US EPA recent task order (US EPA 2023). For the 15-day repeat exposure, there were severe histopathologic changes in the MucilAir™ nasal mock-treatment (air-only) VITROCELL® chamber controls compared to incubator controls preventing any further analysis. The histopathological transitions in cellular morphology from pseudostratified columnar epithelium to squamous epithelium observed in the air only control in this study and previously with 1,3-DCP in MucilAir™ nasal cultures is also a hallmark of chemically induced cytotoxic responses in vivo in the respiratory tract. Histopathology assessments of 3D respiratory tract models used in ALI exposures can provide the linkage between in vitro to in vivo outcomes as part of the validation efforts of ALI use in regulatory toxicology. This report indicates that importance of histopathological assessments of incubator and mock-treatment (air-only) controls from each ALI exposure experiment along with exposed cell based model.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Toxicol Mech Methods Assunto da revista: TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Toxicol Mech Methods Assunto da revista: TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos