Your browser doesn't support javascript.
loading
Electron-Accelerator-Induced Fast Electron Transfer for Enhancing Electrochemiluminescence of Gold Nanoclusters and Its Bioanalysis Application: A Novel Avenue for Developing High-Efficient Emitters.
Zhu, Xiaochun; Su, Huimei; Song, Yuxi; Dai, Yufan; Chai, Yaqin; Yuan, Ruo; Zhou, Ying.
Afiliação
  • Zhu X; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Su H; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Song Y; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Dai Y; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Chai Y; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Yuan R; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
  • Zhou Y; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Anal Chem ; 2024 Aug 08.
Article em En | MEDLINE | ID: mdl-39113553
ABSTRACT
Herein, the gold nanoclusters/CaFe2O4 nanospheres (Au NCs/CaFe2O4) heterostructure as a novel electrochemiluminescence (ECL) emitter was developed. Excitingly, Au NCs/CaFe2O4 displayed highly efficient and greatly stable ECL based on the newly defined electron-accelerator p-type semiconductor CaFe2O4 NS-induced fast electron transfer; it solved one key obstacle of metal NC-based ECL emitters sluggish through-covalent bond electron transport kinetics-caused inferior ECL performance. Specifically, on account of the energy level matching between emitter Au NCs and electron-accelerator CaFe2O4 NSs, the valence band (VB) of the electron-accelerator could provide abundant holes for rapidly transporting the electrogenerated electron from the highest occupied molecular orbital (HOMO) of Au NCs to the electrode, generating massive excited species of Au NCs for strong ECL emission. Notably, Au NCs/CaFe2O4 emerged 5.4-fold higher ECL efficiency with 3.5-fold higher electrochemical oxidation current in comparison with pure Au NCs, exhibiting great prospects in extensive lighting installations, ultrasensitive biosensing, and high-resolution ECL imagery. As applications, an ECL bioassay platform was constructed with Au NCs/CaFe2O4 as an emitter and U-like structure-fueled catalytic hairpin assembly (U-CHA) as a signal amplifier for fast and trace analysis of aflatoxin B1 (AFB1) with the detection limit (LOD) down to 2.45 fg/mL, which was 3 orders of magnitude higher than that of the previous ECL biosensors with much better stability. This study developed an entirely new avenue for enlarging the ECL performance of metal NCs, and it is a very attractive orientation for directing the reasonable design of prominent metal NC-based ECL emitters and broadening the practical application of metal NCs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article