Your browser doesn't support javascript.
loading
Diagnostic accuracy of LiquidArray MTB-XDR VER1.0 for the detection of Mycobacterium tuberculosis complex, fluoroquinolone, amikacin, ethambutol, and linezolid susceptibility.
Auma, Erick; Alberts, Rencia; Derendinger, Brigitta; Venter, Rouxjeane; Streicher, Elizabeth M; Pillay, Samantha; Ghebrekristos, Yonas T; Mburu, Moses; Ruhwald, Morten; Warren, Robin; Penn-Nicholson, Adam; Theron, Grant; de Vos, Margaretha.
Afiliação
  • Auma E; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Alberts R; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Derendinger B; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Venter R; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Streicher EM; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Pillay S; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Ghebrekristos YT; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Mburu M; National Health Laboratory Service, Greenpoint Tuberculosis Laboratory, Cape Town, South Africa.
  • Ruhwald M; FIND, Geneva, Switzerland.
  • Warren R; FIND, Geneva, Switzerland.
  • Penn-Nicholson A; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
  • Theron G; FIND, Geneva, Switzerland.
  • de Vos M; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Res Sq ; 2024 Sep 04.
Article em En | MEDLINE | ID: mdl-39149464
ABSTRACT
Drug susceptibility testing (DST) is essential for effectively starting people on effective tuberculosis (TB) regimens. No accuracy data exists for the new high-throughput LiquidArray MTB-XDR (LA-XDR) test, which detects Mycobacterium tuberculosis complex (MTBC) and susceptibility to the fluoroquinolones, amikacin, ethambutol, and linezolid (the latter two drugs have no rapid molecular DSTs available). We enrolled (n=720) people with presumptive TB who provided two sputa for Xpert MTB/RIF Ultra and culture (MTBC reference standard). Phenotypic DST and Sanger sequencing served as a composite reference standard. Manual FluoroLyse and automated GenoXtract-fleXT (fleXT) DNA extraction methods were compared. For MTBC, LA-XDR using fleXT-extracted or FluoroLyse-extracted DNA had similar sensitivities (85-87%; which improved upon eluate retesting) and specificities (99%). Drug susceptibility sensitivities varied 94% (86, 98) for fluoroquinolones, 64% (45, 80) for amikacin, and 88% (79, 93) for ethambutol (specificities 97-100%). LA-XDR detected 86% (6/7) phenotypically resistant linezolid isolates. LA-XDR with fleXT had indeterminate proportions of 8% (21/251) for fluoroquinolones, 1% (2/251) for ethambutol, 25% (63/251) for amikacin, and 37% (93/251) for linezolid. In a hypothetical population of 100 smear-negative fluoroquinolones-resistant cases, 24% (24/100) could be missed due to an unsuccessful result (1 fleXT error and, for LA-XDR, 2 invalid results, 15 MTBC-negative, 6 fluoroquinolone-indeterminate, 1 false-susceptible). LA-XDR met the minimum WHO target product profile for a next-generation sputum-based moderate complexity DST with high sensitivity for fluoroquinolones and ethambutol resistance, moderate sensitivity for amikacin resistance, and promise for linezolid resistance, for which more data are needed. Improved MTBC detection would reduce missed resistance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Res Sq Ano de publicação: 2024 Tipo de documento: Article País de afiliação: África do Sul

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Res Sq Ano de publicação: 2024 Tipo de documento: Article País de afiliação: África do Sul