Modified (2'-deoxy)adenosines activate autophagy primarily through AMPK/ULK1-dependent pathway.
Bioorg Med Chem Lett
; 113: 129980, 2024 Nov 15.
Article
em En
| MEDLINE
| ID: mdl-39362474
ABSTRACT
Autophagy is a conserved self-digestion process, which governs regulated degradation of cellular components. Autophagy is upregulated upon energy shortage sensed by AMP-dependent protein kinase (AMPK). Autophagy activators might be contemplated as therapies for metabolic neurodegenerative diseases and obesity, as well as cancer, considering tumor-suppressive functions of autophagy. Among them, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr), a nucleoside precursor of the active phosphorylated AMP analog, is the most commonly used pharmacological modulator of AMPK activity, despite its multiple reported "off-target" effects. Here, we assessed the autophagy/mitophagy activation ability of a small set of (2'-deoxy)adenosine derivatives and analogs using a fluorescent reporter assay and immunoblotting analysis. The first two leader compounds, 7,8-dihydro-8-oxo-2'-deoxyadenosine and -adenosine, are nucleoside forms of major oxidative DNA and RNA lesions. The third, a derivative of inactive N6-methyladenosine with a metabolizable phosphate-masking group, exhibited the highest activity in the series. These compounds primarily contributed to the activation of AMPK and outperformed AICAr; however, retaining the activity in knockout cell lines for AMPK (ΔAMPK) and its upstream regulator SIRT1 (ΔSIRT1) suggests that AMPK is not a main cellular target. Overall, we confirmed the prospects of searching for autophagy activators among (2'-deoxy)adenosine derivatives and demonstrated the applicability of the phosphate-masking strategy for increasing their efficacy.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Autofagia
/
Proteínas Quinases Ativadas por AMP
/
Proteína Homóloga à Proteína-1 Relacionada à Autofagia
Limite:
Humans
Idioma:
En
Revista:
Bioorg Med Chem Lett
Assunto da revista:
BIOQUIMICA
/
QUIMICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Federação Russa