Amidation of beta-amyloid peptide strongly reduced the amyloidogenic activity without alteration of the neurotoxicity.
J Neurochem
; 69(5): 2048-54, 1997 Nov.
Article
em En
| MEDLINE
| ID: mdl-9349550
Beta-amyloid accumulates in cerebral deposits in Alzheimer's disease, so to test the correlation between the neurotoxic and fibrillogenic capacity of beta-amyloid, we synthesized a peptide homologous to fragment 25-35 of beta-amyloid (beta25-35) and amidated at the C-terminus (beta25-35-NH2). As the amidation strongly reduced the amyloidogenic capacity of beta25-35, we compared its neurotoxic activity in the amidated (beta25-35-NH2) and nonamidated forms. The viability of primary cultures from fetal rat hippocampus was reduced in a dose-related manner (10-100 microM) similarly by beta25-35 and beta25-35-NH2, whereas a scrambled peptide, amidated or nonamidated, did not alter the neuronal viability. The neurotoxic activity of beta25-35-NH2 is mediated by apoptosis as demonstrated by morphological and biochemical investigations. Electron microscopy examination of culture media with beta25-35 or beta25-35-NH2 incubated with neuronal cells for 7 days confirmed the high level of fibrillogenic activity of beta25-35 and the almost total absence of fibrils in the solution with beta25-35-NH2. Furthermore, staining with thioflavine S was used to identify amyloid fibrils, and only the cultures exposed to beta25-35 exhibited intense staining associated with neuronal membranes. These data indicate that the neurotoxic activity of the beta-amyloid fragment is independent of the aggregated state of the peptide.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fragmentos de Peptídeos
/
Peptídeos beta-Amiloides
/
Hipocampo
/
Neurônios
/
Neurotoxinas
Limite:
Animals
Idioma:
En
Revista:
J Neurochem
Ano de publicação:
1997
Tipo de documento:
Article
País de afiliação:
Itália