Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87.833
Filtrar
1.
Med Eng Phys ; 126: 104153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621850

RESUMO

The Iterative Close Point (ICP) algorithm is used for bone registrations based on ultrasound measurements. However, the ICP has been shown to suffer from local minima. The Complex optimization, as a more robust routine compared to the commonly used gradient-based algorithms, could be an alternative for solving the ICP problem. In this study, we investigated the effect of the initial estimate and the number of registration points on bone registrations achieved using the ICP and a Complex optimization routine and we compared it against using Quadratic Sequential Programming (SQP). Ultrasound measurements were performed with an A-mode probe on a bovine humerus and an ovine femur embedded into ballistic gel. Simultaneously, the bones and the probe were tracked in 3D space using retroreflective markers. Kinematic, ultrasound and geometrical data obtained from scans of the specimens and the probe served as input to a bone registrations routine. Registrations were performed using two ICP solvers for different initial estimates and number of registration points. On average, 68 % of the Complex optimization registrations had less than 1 mm translation error and less than 1° rotational error for perturbations of the initial estimate from the reference measurements compared to the 35 % of the SQP ones. Similar medians of registration errors were observed between the two methods for variations of the number of the employed registration points. Although the Complex optimization provided accurate bone registrations for all cases, the objective function could not always determine the registrations with the smallest registration error. Future research should explore methodologies to overcome this challenge.


Assuntos
Algoritmos , Osso e Ossos , Animais , Bovinos , Ovinos , Ultrassonografia , Osso e Ossos/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Extremidade Inferior , Imageamento Tridimensional/métodos
2.
BMC Oral Health ; 24(1): 452, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622579

RESUMO

OBJECTIVES: To compare the changes in condylar position after mandibular reconstruction with free fibular flap(FFF) and the differences between computer-assisted techniques and traditional methods on CT images. METHODS: Thirty-four patients who underwent mandibular reconstruction with free fibular flap were selected according to the inclusion and exclusion criteria. In the 3D group, virtual surgical planning (VSP) with osteotomy cutting plate and placement guiding plate were used, while the traditional group underwent freehand reconstruction. The CT data of 68 temporomandibular joints (TMJs) were recorded before and immediately after surgery. The condylar position was evaluated by measuring the anterior space (AS), posterior space (PS) and superior space (SS), and the ln (PS/AS) was calculated according to the method proposed by Pullinger and Hollender. RESULTS: In the patients included in the 3D group, the condyle on the ipsilateral side moved slightly backward; however, in the patients in the traditional group, the ipsilateral side moved considerably anteroinferior. No obvious changes on the contralateral side were noted. In the 3D group, 33% of ipsilateral condyles were in the posterior position postoperatively when compared with the preoperative position (13%). In the traditional group, the number of ipsilateral condyles in the anterior position increased from 4 to 10, accounting for 53% postoperatively. Contrary to the traditional group, the 3D group presented less condylar displacement on the ipsilateral side postoperatively. CONCLUSIONS: This study showed a decreased percentage of change in condylar position postoperatively when VSP was used. Virtual surgical planning improved the accuracy of FFF mandibular reconstruction and made the condylar position more stable.


Assuntos
Retalhos de Tecido Biológico , Reconstrução Mandibular , Humanos , Reconstrução Mandibular/métodos , Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/cirurgia , Retalhos de Tecido Biológico/cirurgia , Osso e Ossos , Computadores , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia
3.
Pediatr Transplant ; 28(3): e14755, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623895

RESUMO

BACKGROUND: Hepatic osteodystrophy refers to bone disorders associated with chronic liver disease, including children undergoing liver transplantation (LT). The aim of this study was to quantify the prevalence of pathological fractures (PF) in children before and after LT and to identify associated factors for their occurrence. METHODS: Children aged 0-18 years who underwent LT from 1/2005 to 12/2020 were included in this retrospective study. Data on patient demographics, types and anatomical locations of fracture and biological workups were extracted. Variables were assessed at 3 time points: T - 1 at the moment of listing for LT; T0 at the moment of LT and T + 1 at 1-year post-LT. RESULTS: A total of 105 children (49 [47%] females) were included in this study. Median age at LT was 19 months (range 0-203). Twenty-two patients (21%) experienced 65 PF, 11 children before LT, 10 after LT, and 1 before and after LT. The following variables were observed as associated with PF: At T - 1, low weight and height z-scores, and delayed bone age; at T0, low weight and height z-scores, high total and conjugated bilirubin; at T + 1, persistent low height z-score. Patients in the PF-group were significantly more under calcium supplementation and/or nutritional support at T - 1, T0 and T + 1. CONCLUSION: More than one in five children needing LT sustain a PF before or after LT. Patients with low weight and height z-scores and delayed bone age are at increased risk for PF. Nutritional support remains important, even if to date it cannot fully counteract the risks of PF.


Assuntos
Doenças Ósseas , Fraturas Ósseas , Transplante de Fígado , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fraturas Ósseas/etiologia , Osso e Ossos
4.
Proc Natl Acad Sci U S A ; 121(15): e2320484121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557183

RESUMO

Ethnographic records show that wooden tools played a pivotal role in the daily lives of hunter-gatherers including food procurement tools used in hunting (e.g., spears, throwing sticks) and gathering (e.g. digging sticks, bark peelers), as well as, domestic tools (e.g., handles, vessels). However, wood rarely survives in the archeological record, especially in Pleistocene contexts and knowledge of prehistoric hunter-gatherer lifeways is strongly biased by the survivorship of more resilient materials such as lithics and bones. Consequently, very few Paleolithic sites have produced wooden artifacts and among them, the site of Schöningen stands out due to its number and variety of wooden tools. The recovery of complete wooden spears and throwing sticks at this 300,000-y-old site (MIS 9) led to a paradigm shift in the hunter vs. scavenger debate. For the first time and almost 30 y after their discovery, this study introduces the complete wooden assemblage from Schöningen 13 II-4 known as the Spear Horizon. In total, 187 wooden artifacts could be identified from the Spear Horizon demonstrating a broad spectrum of wood-working techniques, including the splitting technique. A minimum of 20 hunting weapons is now recognized and two newly identified artifact types comprise 35 tools made on split woods, which were likely used in domestic activities. Schöningen 13 II-4 represents the largest Pleistocene wooden artifact assemblage worldwide and demonstrates the key role woodworking had in human evolution. Finally, our results considerably change the interpretation of the Pleistocene lakeshore site of Schöningen.


Assuntos
Artefatos , Armas , Humanos , Osso e Ossos , Arqueologia , Madeira
5.
Proc Natl Acad Sci U S A ; 121(15): e2316106121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564638

RESUMO

The axial columns of the earliest limbed vertebrates show distinct patterns of regionalization as compared to early tetrapodomorphs. Included among their novel features are sacral ribs, which provide linkage between the vertebral column and pelvis, contributing to body support and propulsion by the hindlimb. Data on the axial skeletons of the closest relatives of limbed vertebrates are sparce, with key features of specimens potentially covered by matrix. Therefore, it is unclear in what sequence and under what functional context specializations in the axial skeletons of tetrapods arose. Here, we describe the axial skeleton of the elpistostegalian Tiktaalik roseae and show that transformations to the axial column for head mobility, body support, and pelvic fin buttressing evolved in finned vertebrates prior to the origin of limbs. No atlas-axis complex is observed; however, an independent basioccipital-exoccipital complex suggests increased mobility at the occipital vertebral junction. While the construction of vertebrae in Tiktaalik is similar to early tetrapodomorphs, its ribs possess a specialized sacral domain. Sacral ribs are expanded and ventrally curved, indicating likely attachment to the expanded iliac blade of the pelvis by ligamentous connection. Thus, the origin of novel rib types preceded major alterations to trunk vertebrae, and linkage between pelvic fins and axial column preceded the origin of limbs. These data reveal an unexpected combination of post-cranial skeletal characters, informing hypotheses of body posture and movement in the closest relatives of limbed vertebrates.


Assuntos
Evolução Biológica , Fósseis , Animais , Vertebrados , Osso e Ossos , Extremidade Inferior
6.
Proc Biol Sci ; 291(2021): 20232868, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628132

RESUMO

Studies of vertebrate bone biomechanics often focus on skeletal adaptations at upper extremes of body mass, disregarding the importance of skeletal adaptations at lower extremes. Yet mammals are ancestrally small and most modern species have masses under 5 kg, so the evolution of morphology and function at small size should be prioritized for understanding how mammals subsist. We examined allometric scaling of lumbar vertebrae in the small-bodied Philippine endemic rodents known as cloud rats, which vary in mass across two orders of magnitude (15.5 g-2700 g). External vertebral dimensions scale with isometry or positive allometry, likely relating to body size and nuances in quadrupedal posture. In contrast to most mammalian trabecular bone studies, bone volume fraction and trabecular thickness scale with positive allometry and isometry, respectively. It is physiologically impossible for these trends to continue to the upper extremes of mammalian body size, and we demonstrate a fundamental difference in trabecular bone allometry between large- and small-bodied mammals. These findings have important implications for the biomechanical capabilities of mammalian bone at small body size; for the selective pressures that govern skeletal evolution in small mammals; and for the way we define 'small' and 'large' in the context of vertebrate skeletons.


Assuntos
Vértebras Lombares , Mamíferos , Ratos , Animais , Mamíferos/fisiologia , Osso e Ossos , Tamanho Corporal , Vertebrados
8.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591545

RESUMO

The 'diabetic bone paradox' suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudos Prospectivos , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/genética , Fatores de Risco , Osso e Ossos/metabolismo , Estudo de Associação Genômica Ampla
9.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587386

RESUMO

This protocol details the propagation and passaging of human iPSCs and their differentiation into osteoclasts. First, iPSCs are dissociated into a single-cell suspension for further use in embryoid body induction. Following mesodermal induction, embryoid bodies undergo hematopoietic differentiation, producing a floating hematopoietic cell population. Subsequently, the harvested hematopoietic cells undergo a macrophage colony-stimulating factor maturation step and, finally, osteoclast differentiation. After osteoclast differentiation, osteoclasts are characterized by staining for TRAP in conjunction with a methyl green nuclear stain. Osteoclasts are observed as multinucleated, TRAP+ polykaryons. Their identification can be further supported by Cathepsin K staining. Bone and mineral resorption assays allow for functional characterization, confirming the identity of bona fide osteoclasts. This protocol demonstrates a robust and versatile method to differentiate human osteoclasts from iPSCs and allows for easy adoption in applications requiring large quantities of functional human osteoclasts. Applications in the areas of bone research, cancer research, tissue engineering, and endoprosthesis research could be envisioned.


Assuntos
Reabsorção Óssea , Células-Tronco Pluripotentes Induzidas , Humanos , Osteoclastos , Diferenciação Celular , Fator Estimulador de Colônias de Macrófagos/farmacologia , Osso e Ossos , Glicoproteínas de Membrana , Ligante RANK
10.
Sci Rep ; 14(1): 8030, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580668

RESUMO

Apical periodontitis (AP) is a condition characterized by inflammatory and infectious components in the tooth canal. AP affects periradicular tissues and has systemic repercussions. Physical exercise is a structured activity that requires cardiorespiratory function, and can modulate the inflammatory profile in pathological conditions. As a result, this study aimed to determine the effects of aerobic physical training (PT) on the alveolar bone with and without AP, and its systemic inflammatory repercussions. AP was induced in the mandibular first molars, and PT was performed on a treadmill for five consecutive days over four weeks, with progressive increases in speed and activity time. Blood samples were collected to determine serum cytokine levels using immunoassays, and alveolar bone samples were collected for histopathological evaluation, lesion volume and microarchitecture assessment using computed microtomography. Animals with AP had increased pro-inflammatory cytokines levels compared to those without AP; however, these levels were attenuated or restored by PT. Compared to the AP group, the AP + PT group had a smaller lesion volume and greater preservation of the bone trabeculae in the remaining alveolar bone surrounding the lesion. In overall, PT minimized the severity of AP proving to be a valid strategy for individuals undergoing endodontic treatment.


Assuntos
Citocinas , Periodontite Periapical , Humanos , Animais , Periodontite Periapical/terapia , Periodontite Periapical/patologia , Exercício Físico , Osso e Ossos/patologia
11.
Sci Rep ; 14(1): 8109, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582757

RESUMO

Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Actinas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Osteogênese
12.
Nat Commun ; 15(1): 2940, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580631

RESUMO

A major question in developmental and regenerative biology is how organ size and architecture are controlled by progenitor cells. While limb bones exhibit catch-up growth (recovery of a normal growth trajectory after transient developmental perturbation), it is unclear how this emerges from the behaviour of chondroprogenitors, the cells sustaining the cartilage anlagen that are progressively replaced by bone. Here we show that transient sparse cell death in the mouse fetal cartilage is repaired postnatally, via a two-step process. During injury, progression of chondroprogenitors towards more differentiated states is delayed, leading to altered cartilage cytoarchitecture and impaired bone growth. Then, once cell death is over, chondroprogenitor differentiation is accelerated and cartilage structure recovered, including partial rescue of bone growth. At the molecular level, ectopic activation of mTORC1 correlates with, and is necessary for, part of the recovery, revealing a specific candidate to be explored during normal growth and in future therapies.


Assuntos
Cartilagem , Condrócitos , Animais , Camundongos , Condrócitos/metabolismo , Diferenciação Celular , Osso e Ossos , Morte Celular
13.
J Nanobiotechnology ; 22(1): 153, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580995

RESUMO

BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Osteoclastos , Nanomedicina , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/patologia , Diferenciação Celular
14.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612634

RESUMO

The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into wide open-porous 3D-printed ceramic Gyroid scaffolds. We demonstrated the multipotent characteristics of BMSCs and characterized the extracted exosomes using nanoparticle tracking analysis and proteomic profiling. Through cell culture experimentation, we demonstrated that BMSC-derived exosomes possess the ability to attract cells and significantly facilitate their differentiation into the osteogenic lineage. Furthermore, we observed that scaffold architecture influences exosome release kinetics, with Gyroid scaffolds exhibiting slower release rates compared to Lattice scaffolds. Nevertheless, in vivo implantation did not show increased bone ingrowth in scaffolds loaded with exosomes, suggesting that the scaffold microarchitecture and material were already optimized for osteoconduction and bone augmentation. These findings highlight the lack of understanding about the optimal delivery of exosomes for osteoconduction and bone augmentation by advanced ceramic scaffolds.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Medula Óssea , Proteômica , Engenharia Tecidual , Osso e Ossos , Cerâmica
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612646

RESUMO

Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.


Assuntos
Osso e Ossos , Engenharia Tecidual , Idoso , Humanos , Materiais Biocompatíveis/uso terapêutico , Transplante Ósseo , Laboratórios
16.
BMJ Case Rep ; 17(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604742

RESUMO

This is a case of primary hyperparathyroidism in a female teenager with multiple fractures and severe bone manifestations. The histopathology revealed atypical parathyroid adenoma, an exceedingly rare form of hyperparathyroidism; its main differential diagnosis is parathyroid carcinoma, as it shares both clinical and histological characteristics with it, in addition to its still uncertain malignant potential.


Assuntos
Hiperparatireoidismo , Neoplasias das Paratireoides , Humanos , Adolescente , Feminino , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/patologia , Osso e Ossos/patologia
18.
IEEE J Transl Eng Health Med ; 12: 401-412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606393

RESUMO

Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual's bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.


Assuntos
Densidade Óssea , Osteoporose , Humanos , Idoso , Osteoporose/diagnóstico , Osso e Ossos , Absorciometria de Fóton/métodos , Coluna Vertebral
19.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583439

RESUMO

Osteoprotegerin (OPG) is a trap receptor for the receptor activator of the nuclear factor kappa B ligand (RANKL). We aimed to determine the OPG and free soluble RANKL (sRANKL) concentrations in girls during puberty and their relationships with pubertal stage, growth rate and serum concentrations of estradiol, as well as classical bone formation (N-terminal propeptide of type I collagen (PINP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC)) and bone resorption (C-terminal telopeptide of type I collagen (CTX)) markers. The semi-longitudinal study involved 88 healthy girls, aged 11.8-13.2 years. Their weight and height were measured twice at one-year intervals. Pubertal stages were assessed using the Tanner (T) scale. Blood samples were taken at the first examination. Serum concentrations of OPG, sRANKL, CTX and BALP were determined by enzyme-linked immunosorbent assay, estradiol and PINP by radioimmunoassay and osteocalcin by immunoradiometric assay. The one-year increase in height and weight of girls in the T2 and T3 pubertal stages was greater than that of girls in the T4 stage (p=0.000, p<0.03). OPG concentrations (T2: 4.04±0.62; T3: 4.31±0.79; T4: 4.46±0.84 pmol/L) sRANKL concentrations (T2: 0.22 (IQR 0.09-0.54); T3: 0.42 (IQR 0.22-0.79); T4: 0.35 (IQR 0.16-1.04) pmol/L) and sRANKL/OPG ratios (T2: 0.05 (IQR 0.03-0.13); T3: 0.11 (IQR 0.05-0.19); T4: 0.09 (IQR 0.05-0.19) did not differ significantly between pubertal stages. Concentrations of PINP, CTX, BALP and OC were higher in girls at T3 stage than at the T4 stage (p=0.000, p=0.001, p=0.046, p=0.038; respectively). Concentrations of sRANKL and OPG did not correlate with body weight, height, growth rate, or concentrations of estradiol, PINP, CTX, BALP and OC. There were correlations between the increase in height over one year and the concentrations of PINP (r=0.499, p=0.000), CTX (r=0.311, p=0.003) and BALP (r=0.224, p=0.036), as well as of estradiol (r=-0.473, p=0.000). Unlike PINP, OC, BALP, CTX or estradiol concentrations, sRANKL and OPG concentrations do not change in girls during puberty. Neither OPG nor sRANKL concentrations correlate with somatic characteristics and classical bone turnover markers concentrations.


Assuntos
Osso e Ossos , Osteoprotegerina , Adolescente , Criança , Feminino , Humanos , Biomarcadores , Osso e Ossos/metabolismo , Remodelação Óssea , Estradiol , Ligantes , Estudos Longitudinais , NF-kappa B/metabolismo , Osteocalcina , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
20.
Cell Biochem Funct ; 42(3): e4012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584583

RESUMO

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.


Assuntos
Osso e Ossos , Semaforina-3A , Animais , Camundongos , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Dor , Semaforina-3A/genética , Semaforina-3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...