Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.759
Filtrar
1.
2.
PLoS One ; 19(4): e0300623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564577

RESUMO

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Transplante de Medula Óssea , Diferenciação Celular/fisiologia , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Camundongos Knockout
3.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570190

RESUMO

Cardiovascular system develops from the lateral plate mesoderm. Its three primary cell lineages (hematopoietic, endothelial, and muscular) are specified by the sequential actions of conserved transcriptional factors. ETV2, a master regulator of mammalian hemangioblast development, however, is absent in the chicken genome and acts downstream of NPAS4L in zebrafish. Here, we investigated the epistatic relationship between NPAS4L and ETV2 in avian hemangioblast development. We showed that ETV2 is deleted in all 363 avian genomes analyzed. Mouse ETV2 induced LMO2, but not NPAS4L or SCL, expression in chicken mesoderm. Squamate (lizards, geckos, and snakes) genomes contain both NPAS4L and ETV2 In Madagascar ground gecko, both genes were expressed in developing hemangioblasts. Gecko ETV2 induced only LMO2 in chicken mesoderm. We propose that both NPAS4L and ETV2 were present in ancestral amniote, with ETV2 acting downstream of NPAS4L in endothelial lineage specification. ETV2 may have acted as a pioneer factor by promoting chromatin accessibility of endothelial-specific genes and, in parallel with NPAS4L loss in ancestral mammals, has gained similar function in regulating blood-specific genes.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aves , Mamíferos/metabolismo
4.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558008

RESUMO

Induced pluripotent stem cell (iPSC)-based models are excellent platforms to understand blood development, and iPSC-derived blood cells have translational utility as clinical testing reagents and transfusable cell therapeutics. The advent and expansion of multiomics analysis, including but not limited to single nucleus RNA sequencing (snRNAseq) and Assay for Transposase-Accessible Chromatin sequencing (snATACseq), offers the potential to revolutionize our understanding of cell development. This includes developmental biology using in vitro hematopoietic models. However, it can be technically challenging to isolate intact nuclei from cultured or primary cells. Different cell types often require tailored nuclear preparations depending on cellular rigidity and content. These technical difficulties can limit data quality and act as a barrier to investigators interested in pursuing multiomics studies. Specimen cryopreservation is often necessary due to limitations with cell collection and/or processing, and frozen samples can present additional technical challenges for intact nuclear isolation. In this manuscript, we provide a detailed method to isolate high-quality nuclei from iPSC-derived cells at different stages of in vitro hematopoietic development for use in single-nucleus multiomics workflows. We have focused the method development on the isolation of nuclei from iPSC-derived adherent stromal/endothelial cells and non-adherent hematopoietic progenitor cells, as these represent very different cell types with regard to structural and cellular identity. The described troubleshooting steps limited nuclear clumping and debris, allowing the recovery of nuclei in sufficient quantity and quality for downstream analyses. Similar methods may be adapted to isolate nuclei from other cryopreserved cell types.


Assuntos
Núcleo Celular , Células Endoteliais , Núcleo Celular/metabolismo , Criopreservação/métodos , Células-Tronco Hematopoéticas , Células Sanguíneas
5.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558188

RESUMO

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Assuntos
Medula Óssea , Relógios Circadianos , Camundongos , Animais , Medula Óssea/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética
6.
Hematol Oncol Stem Cell Ther ; 17(2): 120-129, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38560971

RESUMO

BACKGROUND AND OBJECTIVES: Bone marrow mesenchymal stromal cells (BM-MSCs) are key elements of the hematopoietic niche and participate in the regulatory mechanisms of hematopoietic stem cells (HSCs). Hematological diseases can affect MSCs and their functions. However, the dysregulations caused by sickle cell disease (SCD) are not fully elucidated. This work explored changes in BM-MSCs and their relationship with age using sickle cell mice (Townes-SS). MATERIALS AND METHODS: BM-MSCs were isolated from Townes-SS, and control groups 30- and 60-day-old Townes-AA and C57BL/6 J. RESULTS: The BM-MSCs showed no morphological differences in culture and demonstrated a murine MSC-like immunophenotypic profile (Sca-1+, CD29+, CD44+, CD90.2+, CD31-, CD45-, and CD117-). Subsequently, all BM-MSCs were able to differentiate into adipocytes and osteocytes in vitro. Finally, 30-day-old BM-MSCs of Townes-SS showed higher expression of genes related to the maintenance of HSCs (Cxcl12, Vegfa, and Angpt1) and lower expression of pro-inflammatory genes (Tnfa and Il-6). However, 60-day-old BM-MSCs of Townes-SS started to show expression of genes related to reduced HSC maintenance and increased expression of pro-inflammatory genes. CONCLUSION: These results indicates age as a modifying factor of gene expression of BM-MSCs in the context of SCD.


Assuntos
Anemia Falciforme , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Medula Óssea , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular
7.
Cell Stem Cell ; 31(4): 435-436, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579680

RESUMO

Lee et al.1 analyzed the impacts of lentiviral vector transduction and CRISPR-Cas9/homology-directed repair editing on hematopoietic stem and progenitor cell (HSPC) engraftment and clonal dynamics. The study suggests that relative to lentiviral-vector-mediated gene addition, homology-directed repair editing is inefficient in vivo and might impair the engraftment and differentiation of HSPCs.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Células-Tronco Hematopoéticas/metabolismo , Modelos Animais , Sistemas CRISPR-Cas/genética
8.
Cell Stem Cell ; 31(4): 499-518.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579682

RESUMO

Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Edição de Genes , Receptores CCR5/genética , Infecções por HIV/genética , Células-Tronco Hematopoéticas , Receptores CXCR4/genética
9.
Cell Stem Cell ; 31(4): 433-434, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579679

RESUMO

The chemokine receptors CCR5 and CXCR4 are "front doors" for HIV-1 infection in host cells, and their targeting represents a potential solution for a cure. Dudek et al.1 now propose a new gene editing strategy to simultaneously block CCR5- and CXCR4-mediated HIV-1 entry in autologous hematopoietic stem and progenitor cells (HSPCs).


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Células-Tronco Hematopoéticas , Receptores CCR5/genética , Infecções por HIV/genética , Receptores CXCR4/genética , Edição de Genes
10.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573813

RESUMO

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
11.
Braz J Med Biol Res ; 57: e13072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451606

RESUMO

Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell. In the present research, we have analyzed the effects of DNA genome reconstructor preparation (DNAgr), DNAmix, and human recombinant angiogenin on both hematopoietic stem cells and multipotent progenitors. Treatment with bone marrow cells of experimental mice with these preparations stimulates colony formation by hematopoietic stem cells and proliferation of multipotent descendants. The main lineage responsible for this is the granulocyte-macrophage hematopoietic lineage. Using fluorescent microscopy as well as FACS assay, co-localization of primitive c-Kit- and Sca-1-positive progenitors and the TAMRA-labeled double-stranded DNA has been shown. Human recombinant angiogenin was used as a reference agent. Cells with specific markers were quantified in intact bone marrow and colonies grown in the presence of inducers. Quantitative analysis revealed that a total of 14,000 fragment copies of 500 bp, which is 0.2% of the haploid genome, can be delivered into early progenitors. Extracellular double-stranded DNA fragments stimulated the colony formation in early hematopoietic progenitors from the bone marrow, which assumed their effect on cells in G0. The observed number of Sca1+/c-Kit+ cells in colonies testifies to the possibility of both symmetrical and asymmetrical division of the initial hematopoietic stem cell and its progeny.


Assuntos
Células-Tronco Hematopoéticas , Ribonuclease Pancreático , Humanos , Animais , Camundongos , Ribonuclease Pancreático/farmacologia , Células da Medula Óssea , DNA
12.
Immunity ; 57(3): 478-494.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447571

RESUMO

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.


Assuntos
Megacariócitos , Trombopoese , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , Plaquetas
13.
Lupus Sci Med ; 11(1)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471723

RESUMO

OBJECTIVES: In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS: Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through ß-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS: Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through ß-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS: These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , beta-Glucanas , Humanos , Animais , Camundongos , Hematopoese , Células-Tronco Hematopoéticas
14.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473775

RESUMO

This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias Hematológicas/patologia , Biologia , Microambiente Tumoral
15.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474094

RESUMO

The analysis of hematopoietic stem and progenitor cell populations (HSPCs) is fundamental in the understanding of normal hematopoiesis as well as in the management of malignant diseases, such as leukemias, and in their diagnosis and follow-up, particularly the measurement of treatment efficiency with the detection of measurable residual disease (MRD). In this study, I designed a 20-color flow cytometry panel tailored for the comprehensive analysis of HSPCs using a spectral cytometer. My investigation encompassed the examination of forty-six samples derived from both normal human bone marrows (BMs) and patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) along with those subjected to chemotherapy and BM transplantation. By comparing my findings to those obtained through conventional flow cytometric analyses utilizing multiple tubes, I demonstrate that my innovative 20-color approach enables a more in-depth exploration of HSPC subpopulations and the detection of MRD with at least comparable sensitivity. Furthermore, leveraging advanced analytical tools such as t-SNE and FlowSOM learning algorithms, I conduct extensive cross-sample comparisons with two-dimensional gating approaches. My results underscore the efficacy of these two methods as powerful unsupervised alternatives for manual HSPC subpopulation analysis. I expect that in the future, complex multi-dimensional flow cytometric data analyses, such as those employed in this study, will be increasingly used in hematologic diagnostics.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo/métodos , Aprendizado de Máquina não Supervisionado , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Hematopoéticas/patologia , Transplante de Células-Tronco Hematopoéticas/métodos , Neoplasia Residual/diagnóstico
16.
Ann Med ; 56(1): 2329140, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38470973

RESUMO

AIM: The combination of granulocyte-colony stimulating factor (G-CSF) and plerixafor is one of the approaches for hematopoietic stem cell mobilization in patients with multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), and Hodgkin's lymphoma (HL). This systematic review and meta-analysis aimed to determine the ability of G-CSF + plerixafor to mobilize peripheral blood (PB) CD34+ cells and examine its safety profile. METHODS: We performed a database search using the terms 'granulocyte colony stimulating factor', 'G-CSF', 'AMD3100', and 'plerixafor', published up to May 1, 2023. The methodology is described in further detail in the PROSPERO database (CRD42023425760). RESULTS: Twenty-three studies were included in this systematic review and meta-analysis. G-CSF + plerixafor resulted in more patients achieving the predetermined apheresis yield of CD34+ cells than G-CSF alone (OR, 5.33; 95%, 4.34-6.55). It was further discovered that G-CSF + plerixafor could mobilize more CD34+ cells into PB, which was beneficial for the next transplantation in both randomized controlled (MD, 18.30; 95%, 8.74-27.85) and single-arm (MD, 20.67; 95%, 14.34-27.00) trials. Furthermore, G-CSF + plerixafor did not cause more treatment emergent adverse events than G-CSF alone (OR, 1.25; 95%, 0.87-1.80). CONCLUSIONS: This study suggests that the combination of G-CSF and plerixafor, resulted in more patients with MM, NHL, and HL, achieving the predetermined apheresis yield of CD34+ cells, which is related to the more effective mobilization of CD34+ cells into PB.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Linfoma não Hodgkin , Linfoma , Mieloma Múltiplo , Humanos , Mobilização de Células-Tronco Hematopoéticas/métodos , Mieloma Múltiplo/terapia , Fator Estimulador de Colônias de Granulócitos , Compostos Heterocíclicos/efeitos adversos , Linfoma/induzido quimicamente , Linfoma/terapia , Linfoma não Hodgkin/induzido quimicamente , Linfoma não Hodgkin/terapia , Células-Tronco Hematopoéticas , Transplante Autólogo , Benzilaminas , Transplante de Células-Tronco Hematopoéticas/métodos
17.
Tissue Cell ; 87: 102331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430847

RESUMO

The ex vivo expansion of hematopoietic stem cells, with both high quantities and quality, is considered a paramount issue in cell and gene therapy for hematological diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells reveal the importance of using 2D and 3D coculture as a physiological system simulator in the proliferation, differentiation, and homeostasis of HSCs. Herein, the capacity of mesenchymal stem cells derived from different sources to support the expansion and maintenance of HSPC was compared with each other. We evaluated the fold increase of HSPC, CD34 marker expression, cytokine secretion profile of different MSCs, and the frequency of hematopoietic colony-forming unit parameters. Our results show that there was no significant difference between adipose tissue-MSC, Wharton jelly-MSC, and Endometrial-MSCs in HSPC expansion (fold increase: 34.74±4.38 in Wj-MSC, 32.22±5.07 in AD-MSC, 25.9±1.27 in En-MSCs); However, there were significantly more than the expansion media alone (4.4±0.69). The results obtained from the cytokine secretion analysis also confirm these results. Also, there were significant differences in the clonogenicity of Wj-MSC, En-MSCs, and expansion media (CFU-GEMM: 7±1.73, 2.3±1.15, and 2.3±1.52), which indicated that Wj-MSC could significantly maintain the primitive state. As a result, using Wj-mesenchymal stem cells on a 3D coculture system effectively increases the HSPC expansion and maintains the colonization potential of hematopoietic stem cells.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Técnicas de Cocultura , Células Estromais , Citocinas
18.
Front Immunol ; 15: 1366972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455047

RESUMO

Introduction: Donor hematopoietic stem cell (DHSC) infusions are increasingly being studied in transplant patients for tolerance induction. Methods: To analyze the fate of infused DHSCs in patients, we developed an in vitro culture system utilizing CD34+DHSCs stimulated with irradiated allogeneic cells in cytokine supplemented medium long-term. Results: Flow cytometric analyses revealed loss of the CD34 marker and an increase in CD33+ myeloid and CD3+ T-cell proportion by 10.4% and 72.7%, respectively, after 21 days in culture. T-cells primarily expressed TcR-αß and were of both CD4+ and CD8+ subsets. Approximately 80% of CD3+ T cells lacked expression of the co-stimulatory receptor CD28. The CD4+ compartment was predominated by CD4+CD25+CD127-FOXP3+ Tregs (>50% CD4+CD127- compartment) with <1% of all leukocytes exhibiting a CD4+CD127+ phenotype. Molecular analyses for T-cell receptor excision circles showed recent and increased numbers of TcR rearrangements in generated T cells over time suggesting de novo differentiation from DHSCs. CD33+ myeloid cells mostly expressed HLA-DR, but lacked expression of co-stimulatory receptors CD80 and CD83. When studied as modulators in primary mixed lymphocyte reactions where the cells used to stimulate the DHSC were used as responders, the DHSC-lines and their purified CD8+, CD4+, CD33+ and linage negative subsets inhibited the responses in a dose-dependent and non-specific fashion. The CD8+ cell-mediated inhibition was due to direct lysis of responder cells. Discussion: Extrapolation of these results into the clinical situation would suggest that DHSC infusions into transplant recipients may generate multiple subsets of donor "chimeric" cells and promote recipient Treg development that could regulate the anti-donor immune response in the periphery. These studies have also indicated that T cell maturation can occur in vitro in response to allogeneic stimulation without the pre-requisite of a thymic-like environment or NOTCH signaling stimulatory cell line.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Adulto , Humanos , Linfócitos T CD8-Positivos , Antígenos CD34 , Receptores de Antígenos de Linfócitos T
19.
Sci Rep ; 14(1): 6907, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519559

RESUMO

Although regenerative therapy with stem cells is believed to be affected by their proliferation and differentiation potential, there is insufficient evidence regarding the molecular and cellular mechanisms underlying this regenerative effect. We recently found that gap junction-mediated cell-cell transfer of small metabolites occurred very rapidly after stem cell treatment in a mouse model of experimental stroke. This study aimed to investigate whether the tissue repair ability of umbilical cord blood cells is affected by X-irradiation at 15 Gy or more, which suppresses their proliferative ability. In this study, X-irradiated mononuclear (XR) cells were prepared from umbilical cord blood. Even though hematopoietic stem/progenitor cell activity was diminished in the XR cells, the regenerative activity was surprisingly conserved and promoted recovery from experimental stroke in mice. Thus, our study provides evidence regarding the possible therapeutic mechanism by which damaged cerebrovascular endothelial cells or perivascular astrocytes may be rescued by low-molecular-weight metabolites supplied by injected XR cells in 10 min as energy sources, resulting in improved blood flow and neurogenesis in the infarction area. Thus, XR cells may exert their tissue repair capabilities by triggering neo-neuro-angiogenesis, rather than via cell-autonomous effects.


Assuntos
Células Endoteliais , Acidente Vascular Cerebral , Camundongos , Animais , Células Endoteliais/metabolismo , Sangue Fetal , Células-Tronco Hematopoéticas , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Diferenciação Celular , Cordão Umbilical
20.
Nat Commun ; 15(1): 2428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499526

RESUMO

The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...