Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.003
Filtrar
1.
Plant Mol Biol ; 114(3): 42, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630198

RESUMO

Continuous cropping of faba bean (Vicia faba L.) has led to a high incidence of wilt disease. The implementation of an intercropping system involving wheat and faba bean can effectively control the propagation of faba bean wilt disease. To investigate the mechanisms of wheat in mitigating faba bean wilt disease in a wheat-faba bean intercropping system. A comprehensive investigation was conducted to assess the temporal variations in Fusarium oxysporum f. sp. fabae (FOF) on the chemotaxis of benzoxazinoids (BXs) and wheat root through indoor culture tests. The effects of BXs on FOF mycelial growth, spore germination, spore production, and electrical conductivity were examined. The influence of BXs on the ultrastructure of FOF was investigated through transmission electron microscopy. Eukaryotic mRNA sequencing was utilized to analyze the differentially expressed genes in FOF upon treatment with BXs. FOF exhibited a significant positive chemotactic effect on BXs in wheat roots and root secretions. BXs possessed the potential to exert significant allelopathic effects on the mycelial growth, spore germination, and sporulation of FOF. In addition, BXs demonstrated a remarkable ability to disrupt the structural integrity and stability of the membrane and cell wall of the FOF mycelia. BXs possessed the capability of posing threats to the integrity and stability of the cell membrane and cell wall. This ultimately resulted in physiological dysfunction, effectively inhibiting the regular growth and developmental processes of the FOF.


Assuntos
Benzoxazinas , Fusarium , Vicia faba , Parede Celular , Triticum , Crescimento e Desenvolvimento
2.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579009

RESUMO

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adesão Celular/genética , Pectinas/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Parede Celular/metabolismo
3.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
4.
Food Res Int ; 184: 114265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609243

RESUMO

Radio frequency explosion puffing (RFEP) is a novel oil-free puffing technique used to produce crispy textured and nutritious puffed snacks. This study aimed to investigate the effects of freezing at different temperatures (-20 °C, -40 °C, -80 °C) for14 h and freezing times (1 and 2 times) on the cellular structure of purple sweet potato and the quality of RFEP chips. The analysis of cell microstructure, conductivity, and rheology revealed that higher freezing temperatures and more freezing times resulted in increased damage to the cellular structure, leading to greater cell membrane permeability and decreased cell wall stiffness. However, excessive damage to cellular structure caused tissue structure to collapse. Compared with the control group (4 °C), the RFEP sample pre-frozen once at -40 °C had a 47.13 % increase in puffing ratio and a 61.93 % increase in crispness, while hardness decreased by 23.44 % (p < 0.05). There was no significant change in anthocyanin retention or color difference. X-ray microtomography demonstrated that the RFEP sample pre-frozen once at -40 °C exhibited a more homogeneous morphology and uniform pore distribution, resulting in the highest overall acceptability. In conclusion, freezing pre-treatment before RFEP can significantly enhance the puffing quality, making this an effective method for preparing oil-free puffing products for fruits and vegetables.


Assuntos
Ipomoea batatas , Congelamento , Explosões , Parede Celular , Temperatura Baixa
5.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563086

RESUMO

The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.


Assuntos
Anfotericina B , Candida albicans , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Peptídeos/farmacologia , Membrana Celular , Parede Celular , Testes de Sensibilidade Microbiana
6.
Planta ; 259(5): 115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589536

RESUMO

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Assuntos
Arabidopsis , Oryza , Glicosiltransferases/análise , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , 60613 , Poaceae/metabolismo , Parede Celular/metabolismo
7.
PLoS One ; 19(4): e0301613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564580

RESUMO

Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and deliver microbial molecules to distant target cells in a host. OMVs secreted by probiotic probiotic strain Escherichia coli Nissle 1917 (EcN) have been reported to induce an immune response. In this study, we aimed to increase the OMV production of EcN. The double gene knockout of mlaE and nlpI was conducted in EcN because the ΔmlaEΔnlpI of experimental strain E. coli K12 showed the highest OMV production in our previous report. The ΔmlaEΔnlpI of EcN showed approximately 8 times higher OMV production compared with the parental (wild-type) strain. Quick-freeze, deep-etch replica electron microscopy revealed that plasmolysis occurred in the elongated ΔmlaEΔnlpI cells and the peptidoglycan (PG) had numerous holes. While these phenomena are similar to the findings for the ΔmlaEΔnlpI of K12, there were more PG holes in the ΔmlaEΔnlpI of EcN than the K12 strain, which were observed not only at the tip of the long axis but also in the whole PG structure. Further analysis clarified that the viability of ΔmlaEΔnlpI of EcN decreased compared with that of the wild-type. Although the amount of PG in ΔmlaEΔnlpI cells was about half of that in wild-type, the components of amino acids in PG did not change in ΔmlaEΔnlpI. Although the viability decreased compared to the wild-type, the ΔmlaEΔnlpI grew in normal culture conditions. The hypervesiculation strain constructed here is expected to be used as an enhanced probiotic strain.


Assuntos
Proteínas de Escherichia coli , Probióticos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Parede Celular/metabolismo , Probióticos/metabolismo
8.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611875

RESUMO

Mamey (Mammea americana L.) is a tropical fleshy fruit native from the West Indies and northern South America. It is very appreciated for its flavor and color but has been little described. The present study investigates the composition and histochemistry of the pulp cell walls of three mamey accessions readily available in Martinique. The impact of pulp processing into puree on cell wall composition is evaluated. The histology and rheology of mamey puree are assessed considering these characterizations. Mamey pulp cell wall composition is dominated by highly methyl-esterified pectins (DM: 66.2-76.7%) of high molecular weight, and show few hemicelluloses, mainly xyloglucans. Processing reduced methyl-esterified uronic acid contents and gave purees with significantly different viscosities. Mamey puree was composed of polydisperse particles (20-2343 µm), which size distributions were different depending on the accession: Ti Jacques was dominated by smaller particles (50% had approximated diameters lower than 160 µm), Sonson's by larger particles (50% had approximated diameters higher than 900 µm), and Galion's had an intermediate profile. This new knowledge on mamey pulp is valuable for future works on mamey processing into new food products, even more so for those including cell wall polysaccharide-degrading enzymes.


Assuntos
Mammea , Parede Celular , Alimentos , Histocitoquímica , Peso Molecular
9.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611898

RESUMO

Biofuels are clean and renewable energy resources gaining increased attention as a potential replacement for non-renewable petroleum-based fuels. They are derived from biomass that could either be animal-based or belong to any of the three generations of plant biomass (agricultural crops, lignocellulosic materials, or algae). Over 130 studies including experimental research, case studies, literature reviews, and website publications related to bioethanol production were evaluated; different methods and techniques have been tested by scientists and researchers in this field, and the most optimal conditions have been adopted for the generation of biofuels from biomass. This has ultimately led to a subsequent scale-up of procedures and the establishment of pilot, demo, and large-scale plants/biorefineries in some regions of the world. Nevertheless, there are still challenges associated with the production of bioethanol from lignocellulosic biomass, such as recalcitrance of the cell wall, multiple pretreatment steps, prolonged hydrolysis time, degradation product formation, cost, etc., which have impeded the implementation of its large-scale production, which needs to be addressed. This review gives an overview of biomass and bioenergy, the structure and composition of lignocellulosic biomass, biofuel classification, bioethanol as an energy source, bioethanol production processes, different pretreatment and hydrolysis techniques, inhibitory product formation, fermentation strategies/process, the microorganisms used for fermentation, distillation, legislation in support of advanced biofuel, and industrial projects on advanced bioethanol. The ultimate objective is still to find the best conditions and technology possible to sustainably and inexpensively produce a high bioethanol yield.


Assuntos
Biocombustíveis , Fontes Geradoras de Energia , Animais , Biomassa , Parede Celular , Produtos Agrícolas
10.
Cell Biochem Funct ; 42(2): e3963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424684

RESUMO

Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90 ) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.


Assuntos
Anti-Infecciosos , Fulerenos , Fulerenos/farmacologia , Mycobacterium smegmatis , Anti-Infecciosos/farmacologia , Biofilmes , Parede Celular
11.
Planta ; 259(4): 83, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441675

RESUMO

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular , Germinação/genética , Giberelinas , Proteínas de Homeodomínio/genética , Sementes/genética
12.
Analyst ; 149(8): 2204-2222, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517346

RESUMO

The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.


Assuntos
Bactérias , Peptidoglicano , Peptidoglicano/química , Bactérias/metabolismo , Proteínas de Ligação às Penicilinas , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
13.
Langmuir ; 40(15): 7791-7811, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451026

RESUMO

Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.


Assuntos
Anti-Infecciosos , Simulação de Dinâmica Molecular , Membrana Celular/química , Parede Celular , Bactérias , Tensoativos/metabolismo , Bactérias Gram-Negativas
14.
NPJ Biofilms Microbiomes ; 10(1): 34, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555351

RESUMO

Coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is an invasive palm pest whose larvae eat wood, yet lack the necessary digestive enzymes. This study confirmed endogenous CRB cellulase is inactive, suggesting microbial fermentation. The inner lining of the CRB hindgut has tree-like structures covered with a conspicuous biofilm. To identify possible symbionts, 16 S rRNA amplicon sequencing was used on individuals from across Taiwan. Several taxa of Clostridia, an anaerobic class including many cellulolytic bacteria, were highly abundant in most individuals from all locations. Whole metagenome sequencing further confirmed many lignocellulose degrading enzymes are derived from these taxa. Analyses of eggs, larvae, adults, and soil found these cellulolytic microbes are not transmitted vertically or transstadially. The core microbiomes of the larval CRB are likely acquired and enriched from the environment with each molt, and enable efficient digestion of wood.


Assuntos
Besouros , Simbiose , Animais , Besouros/genética , Besouros/microbiologia , Larva/genética , Larva/microbiologia , Parede Celular
15.
Carbohydr Polym ; 334: 122024, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553223

RESUMO

Upon tensile stress, the spiral cellulose fibrils in wood cell walls rotate like springs with decreasing microfibril angle (MFA), and the cellulose molecules elongate in the chain direction. Compression wood with high MFA and opposite wood with low MFA were comparatively studied by in-situ tensile tests combined with synchrotron radiation WAXS in the present study. FTIR spectroscopy revealed that compression wood had a higher lignin content and fewer acetyl groups. For both types of wood, the lattice spacing d004 increased and the MFA decreased gradually with the increase of tensile stress. At stresses beyond the yield point, cellulose lattice strain depended linearly on macroscopic stress, while the MFA depended linearly on macroscopic strain. The deformation mechanisms of compression wood and opposite wood are not essentially different but differ in their deformation behavior. Specifically, the contribution ratio of lattice strain and cellulose fibril reorientation to macroscopic strain was 0.25 and 0.53 for compression wood, and 0.40 and 0.33 for opposite wood, respectively. Due to the geometric effects of MFA, a greater contribution of cellulose fibril reorientation to the macroscopic deformation was detected in compression wood than in opposite wood.


Assuntos
Celulose , Pinus , Celulose/química , Madeira/metabolismo , Microfibrilas/química , Lignina/metabolismo , Parede Celular/química
16.
Plant Physiol Biochem ; 208: 108495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452451

RESUMO

Solanum lycopersicum (Tomato) leaves and stems are considered waste. Valorization of this waste can be achieved by for example the extraction of proteins. This prospect is promising but currently not feasible, since protein extraction yields from tomato leaves are low, amongst other due to the (physical) barrier formed by the plant cell walls. However, the molecular aspects of the relationship between cell wall properties and protein extractability from tomato leaves are currently not clear and thus objective of this study. To fill this knowledge gap the biochemical composition of plant cell walls was measured and related to protein extraction yields at different plant ages, leaf positions, and across different tomato accessions, including two Solanum lycopersicum cultivars and the wildtype species S. pimpinellifolium and S. pennellii. For all genotypes, protein extraction yields from tomato leaves were the highest in young tissues, with a decreasing trend towards older plant material. This decrease of protein extraction yield was accompanied by a significant increase of arabinose and galacturonic acid content and a decrease of galactose content in the cell walls of old-vs-young tissues. This resulted in strong negative correlations between protein extraction yield and the content of arabinose and galacturonic acid in the cell wall, and a positive correlation between the content of galactose and protein extraction yield. Overall, these results point to the importance of the pectin network on protein extractability, making pectin a potential breeding target for enhancing protein extractability from tomato leaves.


Assuntos
Ácidos Hexurônicos , Solanum lycopersicum , Solanum lycopersicum/genética , Arabinose , Galactose , Melhoramento Vegetal , Parede Celular/metabolismo , Folhas de Planta/metabolismo , Pectinas/metabolismo
17.
Immunohorizons ; 8(3): 269-280, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517345

RESUMO

Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVß5, CD36, and TIM-3, whereas TIM-1, αVß3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.


Assuntos
Antraz , Bacillus anthracis , Humanos , c-Mer Tirosina Quinase/metabolismo , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Antraz/metabolismo , Antraz/patologia , 60574 , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Macrófagos/metabolismo , Parede Celular/metabolismo , Parede Celular/patologia
18.
J Environ Manage ; 357: 120691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554452

RESUMO

Regions affected by heavy metal contamination frequently encounter phosphorus (P) deficiency. Numerous studies highlight crucial role of P in facilitating cadmium (Cd) accumulation in woody plants. However, the regulatory mechanism by which P affects Cd accumulation in roots remains ambiguous. This study aims to investigate the effects of phosphorus (P) deficiency on Cd accumulation, Cd subcellular distribution, and cell wall components in the roots of Salix caprea under Cd stress. The results revealed that under P deficiency conditions, there was a 35.4% elevation in Cd content in roots, coupled with a 60.1% reduction in Cd content in shoots, compared to the P sufficiency conditions. Under deficient P conditions, the predominant response of roots to Cd exposure was the increased sequestration of Cd in root cell walls. The sequestration of Cd in root cell walls increased from 37.1% under sufficient P conditions to 66.7% under P deficiency, with pectin identified as the primary Cd binding site under both P conditions. Among cell wall components, P deficiency led to a significant 31.7% increase in Cd content within pectin compared to P sufficiency conditions, but did not change the pectin content. Notably, P deficiency significantly increased pectin methylesterase (PME) activity by regulating the expression of PME and PMEI genes, leading to a 10.4% reduction in the degree of pectin methylesterification. This may elucidate the absence of significant changes in pectin content under P deficiency conditions and the concurrent increase in Cd accumulation in pectin. Fourier transform infrared spectroscopy (FTIR) results indicated an increase in carboxyl groups in the root cell walls under P deficiency compared to sufficient P treatment. The results provide deep insights into the mechanisms of higher Cd accumulation in root mediated by P deficiency.


Assuntos
Pectinas , Salix , Pectinas/química , Pectinas/metabolismo , Pectinas/farmacologia , Cádmio/metabolismo , Salix/metabolismo , Raízes de Plantas/química , Parede Celular/metabolismo , Fósforo/análise
19.
mBio ; 15(4): e0032524, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426748

RESUMO

Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.


Assuntos
Proteínas de Escherichia coli , Peptidoglicano Glicosiltransferase , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Parede Celular/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo
20.
mBio ; 15(4): e0199023, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470054

RESUMO

The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Staphylococcus aureus/genética , Coagulase/metabolismo , Glucose/metabolismo , Ácidos Teicoicos/metabolismo , Staphylococcus/metabolismo , Fagos de Staphylococcus/genética , DNA/metabolismo , Parede Celular/metabolismo , Infecções Estafilocócicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...