Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.983
Filtrar
1.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454456

RESUMO

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lipídeos , Mutação , Doença de Parkinson/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474117

RESUMO

Gaucher disease (GD, OMIM 230800) is one of the most common lysosomal disorders, being caused by the deficient activity of the enzyme acid ß-glucocerebrosidase (Gcase). Three clinical forms of Gaucher's disease (GD) are classified based on neurological involvement. Type 1 (GD1) is non-neuronopathic, while types 2 (GD2) and 3 (GD3) are neuronopathic forms. Gcase catalyzes the conversion of glucosylceramide (GlcCer) into ceramide and glucose. As GlcCer accumulates in lysosomal macrophages, it undergoes deacylation to become glycosylsphingosine (lyso-Gb1), which has shown to be a useful and reliable biomarker for the diagnosis and monitoring of treated and untreated patients with GD. Multiple myeloma (MM) is one of the leading causes of cancer-related death among patients with GD and monoclonal gammopathy of undetermined significance (MGUS) is a non-neoplastic condition that can be a telltale sign of a B clonal proliferation caused by the chronic activation of B cells. This study aimed to quantify Lyso-Gb1 levels in dried blood spots (DBS) and cerebrospinal fluid (CSF) as biomarkers for Gaucher disease (GD) and discuss the association of this biomarker with other clinical parameters. This is a mixed-methods study incorporating both cross-sectional and longitudinal elements within a cohort design with a convenience-sampling strategy. Data collection took place from January 2012 to March 2023. Lyso-Gb1 extraction from DBS involved the use of a methanol-acetonitrile-water mixture, followed by incubation and centrifugation. Analysis was performed using UPLC-MS/MS with MassLynx software version 4.2 and the control group for the DBS measurements included general newborns. CSF Lyso-Gb1 was extracted using ethyl acetate, analyzed by UPLC-MS/MS with a calibration curve, and expressed in pmol/L. Lysosomal activity in CSF was assessed by measuring chitotriosidase (Cht), and other lysosomal enzyme activities were assessed as previously described in the literature. Patients with metachromatic leukodystrophy (MLD) were used as controls. Thirty-two treated patients (twenty-nine GD1 and three GD3, all on ERT except for one GD type on SRT with eliglustat) and three untreated patients (one GD1, one GD2, and one GD3) were included. When analyzing only the treated GD1 group, a significant correlation was found between lyso-Gb1 and age (rho = -0.447, p = 0.001), ChT, and IgG levels (rho = 0.73, p < 0.001; and rho = 0.36, p = 0.03, respectively). Five GD1 patients (three females, mean age 40 years) also had their CSF collected and analyzed. The average measurement of lyso-Gb1 in CSF was 94 pmol/L (range: 57.1-157.9 pmol/L) versus <6.2 pmol/L in the control group (MLD). This is the first time, to the best of our knowledge, that lyso-Gb1 has been associated with IgG levels. While this finding reflects a risk for MGUS or MM and not only chronic plasma B-cell activation, it still requires further studies. Moreover, the analysis of CSF lyso-Gb1 levels in GD1 patients was demonstrated to be significantly higher than the control group. This raises the hypothesis that CSF lyso-Gb1 may serve as a valuable indicator for neurological involvement in GD, providing insights into the potential implications for neurological manifestations in GD, including GD1. The correlation between lyso-Gb1 and ChT levels in treated GD1 patients further underscores the interconnectedness of lysosomal markers and their relevance in monitoring.


Assuntos
Doença de Gaucher , Gamopatia Monoclonal de Significância Indeterminada , Psicosina , Adulto , Feminino , Humanos , Recém-Nascido , Biomarcadores , Brasil , Cromatografia Líquida , Estudos Transversais , Doença de Gaucher/diagnóstico , Imunoglobulina G/sangue , Psicosina/análogos & derivados , Espectrometria de Massas em Tandem
3.
Adv Rheumatol ; 64(1): 22, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520029

RESUMO

Gaucher and Fabry diseases are lysosomal storage disorders in which deficient enzyme activity leads to pathological accumulation of sphingolipids. These diseases have a broad phenotypic presentation. Musculoskeletal symptoms and pain complaints are frequently reported by patients. Thus, rheumatologists can be contacted by these patients, contributing to the correct diagnosis, earlier indication of appropriate treatment and improvement of their prognosis. This review describes important concepts about Gaucher and Fabry diseases that rheumatologists should understand to improve patients' quality of life and change the natural history of these diseases.


Assuntos
Oftalmopatias , Doença de Fabry , Doença de Gaucher , Doenças por Armazenamento dos Lisossomos , Humanos , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Gaucher/complicações , Doença de Gaucher/diagnóstico , Reumatologistas , Qualidade de Vida , Doenças por Armazenamento dos Lisossomos/diagnóstico
4.
Am J Case Rep ; 25: e943398, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509666

RESUMO

BACKGROUND Gaucher disease is a rare autosomal recessive disorder characterized by mutations in the glucocerebrosidase gene, resulting in deficient enzyme activity and accumulation of glucocerebroside in macrophages, which leads to pathological changes in affected organs. The atypical clinical manifestations of Gaucher disease often contribute to delays in diagnosis and treatment. CASE REPORT We present the case of a 4-month-old female infant admitted to the Department of Pediatrics with progressive hepatosplenomegaly since birth. Concurrently, she had cytomegalovirus infection and sensory neurological hearing loss. Gaucher disease diagnosis was confirmed through whole-exome sequencing and validated by a glucocerebrosidase activity test, revealing the mutation site as c.1448T>C. This report outlines the differential diagnosis process for Gaucher disease in this infant before confirmation, contributing valuable insights for early diagnosis. CONCLUSIONS Our case underscores the challenge of diagnosing Gaucher disease due to its atypical presentation. The coexistence of cytomegalovirus infection complicates the clinical picture, emphasizing the need for careful differential diagnosis. Unfortunately, delayed diagnosis is all too common in rare diseases like Gaucher disease, even when the clinical presentation is seemingly typical. This highlights the need for increased awareness and education within the medical community to facilitate early recognition, which is essential for prompt intervention and improved outcomes. This report contributes valuable clinical and genetic information, aiming to enhance awareness and deepen the understanding of Gaucher disease in infants, particularly those with concurrent infections.


Assuntos
Infecções por Citomegalovirus , Doença de Gaucher , Lactente , Humanos , Criança , Feminino , Glucosilceramidase/genética , Doença de Gaucher/complicações , Doença de Gaucher/diagnóstico , Diagnóstico Precoce , Mutação , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/diagnóstico
5.
JAMA Ophthalmol ; 142(2): e234744, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358448

RESUMO

This case report discusses posterior segment characteristics in a patient aged 24 years with low vision and a history of Gaucher disease.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/diagnóstico , Doença de Gaucher/tratamento farmacológico
6.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38384246

RESUMO

Gaucher disease (GD) is a prevalent lysosomal storage disorder (LSD) that significantly impacts individuals' lives. However, the exorbitant prices of GD medications pose a major hurdle in ensuring widespread availability and affordability of treatment in India. The country heavily relies on imported medications, leading to high costs and limited access for many patients. This article aims to address this issue by advocating for the establishment of indigenous manufacturing capabilities for GD medicines in India. Through an examination of the current landscape of GD treatment, including the availability, affordability, and challenges associated with imported medications, this article highlights the urgent need for localized production. By focusing on the potential benefits of indigenous manufacturing, such as reduced costs, increased accessibility, and enhanced availability, this research aims to provide insights and recommendations to policymakers, healthcare professionals, and relevant stakeholders. The findings underscore the importance of developing domestic manufacturing capabilities to address the affordability and accessibility challenges faced by GD patients in India. The research also emphasizes the potential positive impact on the healthcare system, the pharmaceutical industry, and the overall well-being of individuals with GD. Ultimately, this article seeks to stimulate discussions and actions towards creating a sustainable framework for indigenous manufacturing of GD medicines, thereby improving the lives of those affected by this rare and debilitating condition.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/epidemiologia , Custos e Análise de Custo , Índia/epidemiologia , Acesso aos Serviços de Saúde
8.
Orphanet J Rare Dis ; 19(1): 71, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365689

RESUMO

BACKGROUND: Gaucher disease (GD) is a rare autosomal recessive condition associated with clinical features such as splenomegaly, hepatomegaly, anemia, thrombocytopenia, and bone abnormalities. Three clinical forms of GD have been defined based on the absence (type 1, GD1) or presence (types 2 and 3) of neurological signs. Early diagnosis can reduce the likelihood of severe, often irreversible complications. The aim of this study was to validate the ability of factors from the Gaucher Earlier Diagnosis Consensus (GED-C) scoring system to discriminate between patients with GD1 and controls using real-world data from electronic patient medical records from Maccabi Healthcare Services, Israel's second-largest state-mandated healthcare provider. METHODS: We applied the GED-C scoring system to 265 confirmed cases of GD and 3445 non-GD controls matched for year of birth, sex, and socioeconomic status identified from 1998 to 2022. The analyses were based on two databases: (1) all available data and (2) all data except free-text notes. Features from the GED-C scoring system applicable to GD1 were extracted for each individual. Patients and controls were compared for the proportion of the specific features and overall GED-C scores. Decision tree and random forest models were trained to identify the main features distinguishing GD from non-GD controls. RESULTS: The GED-C scoring distinguished individuals with GD from controls using both databases. Decision tree models for the databases showed good accuracy (0.96 [95% CI 0.95-0.97] for Database 1; 0.95 [95% CI 0.94-0.96] for Database 2), high specificity (0.99 [95% CI 0.99-1]) for Database 1; 1.0 [95% CI 0.99-1] for Database 2), but relatively low sensitivity (0.53 [95% CI 0.46-0.59] for Database 1; 0.32 [95% CI 0.25-0.38]) for Database 2). The clinical features of splenomegaly, thrombocytopenia (< 50 × 109/L), and hyperferritinemia (300-1000 ng/mL) were found to be the three most accurate classifiers of GD in both databases. CONCLUSION: In this analysis of real-world patient data, certain individual features of the GED-C score discriminate more successfully between patients with GD and controls than the overall score. An enhanced diagnostic model may lead to earlier, reliable diagnoses of Gaucher disease, aiming to minimize the severe complications associated with this disease.


Assuntos
Doença de Gaucher , Trombocitopenia , Humanos , Doença de Gaucher/diagnóstico , Doença de Gaucher/complicações , Consenso , Esplenomegalia/complicações , Diagnóstico Precoce , Trombocitopenia/complicações
9.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339105

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations in GBA1, characterized by glucocerebrosidase dysfunction and glucocerebroside and glucosylsphingosine accumulation. Since phenotypes of murine models of GD often differ from those in patients, the careful characterization of Gba1 mutant mice is necessary to establish their ability to model GD. We performed side-by-side comparative biochemical and pathologic analyses of four murine Gba1 models with genotypes L444P/L444P (p.L483P/p.L483P), L444P/null, D409H/D409H (p.D448H/p.D448H) and D409H/null, along with matched wildtype mice, all with the same genetic background and cage conditions. All mutant mice exhibited significantly lower glucocerebrosidase activity (p < 0.0001) and higher glucosylsphingosine levels than wildtype, with the lowest glucocerebrosidase and the highest glucosylsphingosine levels in mice carrying a null allele. Although glucocerebrosidase activity in L444P and D409H mice was similar, D409H mice showed more lipid accumulation. No Gaucher or storage-like cells were detected in any of the Gba1 mutant mice. Quantification of neuroinflammation, dopaminergic neuronal loss, alpha-synuclein levels and motor behavior revealed no significant findings, even in aged animals. Thus, while the models may have utility for testing the effect of different therapies on enzymatic activity, they did not recapitulate the pathological phenotype of patients with GD, and better models are needed.


Assuntos
Doença de Gaucher , Psicosina/análogos & derivados , Camundongos , Humanos , Animais , Idoso , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutação
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220381, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368939

RESUMO

Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Autofagia/genética , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Descoberta de Drogas , Imunidade Inata
12.
Orphanet J Rare Dis ; 19(1): 11, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183145

RESUMO

BACKGROUND: Patients with Gaucher disease (GD), a rare lysosomal storage disorder, have reduced health-related quality of life (HRQOL). A patient-reported outcome measure (PROM) for HRQOL developed for type 1 GD (GD1) is not appropriate for patients with neuronopathic GD (nGD) types 2 (GD2) and 3 (GD3). In this study, we developed a new PROM for use in all GD types. We previously reported the qualitative analysis of interviews with Japanese patients with nGD, which was used to create nGD-specific PROM items. Here we evaluated the full PROM combining the type 1 questionnaire with the new nGD-specific items. METHODS: Patients with confirmed GD were recruited (Association of Gaucher Disease Patients in Japan or leading doctors) for pre-testing (May 2021) or the main survey (October-December 2021). The PROM had three parts: Parts 1 and 2 were translated into Japanese from the pre-existing GD1 PROM, whereas Part 3 was newly developed. Patients (or their caregivers, where necessary) completed the PROM questionnaire on paper and returned it by mail. Mean scores were determined overall and by GD type. Inter-item correlations, content consistency (Cronbach's alpha), and test-retest reliability (Cohen's kappa; main survey only, taken 2 weeks apart) were calculated. RESULTS: Sixteen patients (three with GD1; six with GD2; seven with GD3) and 33 patients (nine with GD1; 13 with GD2; 11 with GD3) participated in the pre-test and main survey, respectively. All GD2 patients and one-third (6/18) of GD3 patients required caregivers to complete the questionnaire. Mean scores indicated that the burden was highest in GD2 and lowest in GD1. In the main survey, internal consistency was high (Cronbach's alpha = 0.898 overall, 0.916 for Part 3), and test-retest reliability was high for Part 3 (kappa > 0.60 for 13/16 items) but low for Part 1 (kappa < 0.60 for 12/15 items). CONCLUSIONS: We have developed a flexible and reliable PROM that can be tailored for use in all types of GD and propose using Parts 1 and 2 for GD1, Parts 2 and 3 for GD2, and Parts 1, 2, and 3 for GD3.


Assuntos
Doença de Gaucher , Humanos , Japão , Qualidade de Vida , Reprodutibilidade dos Testes , Medidas de Resultados Relatados pelo Paciente
13.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
14.
Mol Genet Metab ; 141(1): 107736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000346

RESUMO

Glucosylsphingosine (lyso-GL1) is a biomarker used to monitor disease and treatment response in Gaucher disease. Data from adults show that higher values of lyso-GL1 are associated with increased disease progression, however similar data in the pediatric population is lacking. In a cohort of pediatric patients, we present a relationship between lyso-GL1 value and Gaucher type, age, and treatment response. Data from this study may serve as a reference for providers monitoring children with Gaucher disease.


Assuntos
Doença de Gaucher , Adulto , Criança , Humanos , Doença de Gaucher/tratamento farmacológico , Psicosina , Biomarcadores , Terapia de Reposição de Enzimas
15.
Chembiochem ; 25(1): e202300730, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877519

RESUMO

Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Piperidinas/farmacologia , Piperidinas/metabolismo , Mutação , Fibroblastos , Concentração de Íons de Hidrogênio
16.
Cell Struct Funct ; 49(1): 1-10, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38072450

RESUMO

Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
17.
J Neurochem ; 168(1): 52-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071490

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by the defective activity of acid ß-glucosidase (GCase) which results from mutations in GBA1. Neurological forms of GD (nGD) can be generated in mice by intra-peritoneal injection of conduritol B-epoxide (CBE) which irreversibly inhibits GCase. Using this approach, a number of pathological pathways have been identified in mouse brain by RNAseq. However, unlike transcriptomics, proteomics gives direct information about protein expression which is more likely to provide insight into which cellular pathways are impacted in disease. We now perform non-targeted, mass spectrometry-based quantitative proteomics on brains from mice injected with 50 mg/kg body weight CBE for 13 days. Of the 5038 detected proteins, 472 were differentially expressed between control and CBE-injected mice of which 104 were selected for further analysis based on higher stringency criteria. We also compared these proteins with differentially expressed genes (DEGs) identified by RNAseq. Some lysosomal proteins were up-regulated as was interferon signaling, whereas levels of ion channel related proteins and some proteins associated with neurotransmitter signaling were reduced, as was cholesterol metabolism. One protein, transglutaminase 1 (TGM1), which is elevated in a number of neurodegenerative diseases, was absent from the control group but was found at high levels in CBE-injected mice, and located in the extracellular matrix (ECM) in layer V of the cortex and intracellularly in Purkinje cells in the cerebellum. Together, the proteomics data confirm previous RNAseq data and add additional mechanistic understanding about cellular pathways that may play a role in nGD pathology.


Assuntos
Doença de Gaucher , Animais , Camundongos , Doença de Gaucher/metabolismo , Proteômica , Glucosilceramidase/genética , Encéfalo/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo
18.
Best Pract Res Clin Haematol ; 36(4): 101522, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092479

RESUMO

Gaucher disease GD), is a rare lysosomal storage disorder caused by deficient acid ß-glucosylceramidase activity and accumulation of glucosylceramide in tissue macrophages. With the 1991 advent of alglucerase enzyme replenishment therapy (ERT), the manufacturer (Genzyme Corporation) created the ICGG Gaucher Registry to collect longitudinal observational "real word" information about GD world-wide in heterogeneous patient populations, to annotate phenotypes and genotypes that define the natural history of GD in untreated patients, and to document and analyze treatment outcomes for alglucerase and any other future treatments. For 32 years, the ICGG Gaucher Registry has functioned as an educational tool for patients, clinicians, and other stakeholders to increase scientific knowledge of GD, to provide practical management guidance, and to positively impact patient care. This paper illustrates how an industry sponsored registry guided by a company independent scientific advisory board has successfully addressed its mission and evolved in step with technologic and scientific advances.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Resultado do Tratamento , Sistema de Registros
19.
PLoS Genet ; 19(12): e1011063, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127816

RESUMO

Mutations in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD) and are the greatest known genetic risk factors for Parkinson's disease (PD). Communication between the gut and brain and immune dysregulation are increasingly being implicated in neurodegenerative disorders such as PD. Here, we show that flies lacking the Gba1b gene, the main fly orthologue of GBA1, display widespread NF-kB signalling activation, including gut inflammation, and brain glial activation. We also demonstrate intestinal autophagic defects, gut dysfunction, and microbiome dysbiosis. Remarkably, modulating the microbiome of Gba1b knockout flies, by raising them under germ-free conditions, partially ameliorates lifespan, locomotor and immune phenotypes. Moreover, we show that modulation of the immune deficiency (IMD) pathway is detrimental to the survival of Gba1 deficient flies. We also reveal that direct stimulation of autophagy by rapamycin treatment achieves similar benefits to germ-free conditions independent of gut bacterial load. Consistent with this, we show that pharmacologically blocking autophagosomal-lysosomal fusion, mimicking the autophagy defects of Gba1 depleted cells, is sufficient to stimulate intestinal immune activation. Overall, our data elucidate a mechanism whereby an altered microbiome, coupled with defects in autophagy, drive chronic activation of NF-kB signaling in a Gba1 loss-of-function model. It also highlights that elimination of the microbiota or stimulation of autophagy to remove immune mediators, rather than prolonged immunosuppression, may represent effective therapeutic avenues for GBA1-associated disorders.


Assuntos
Microbioma Gastrointestinal , Doença de Gaucher , Doença de Parkinson , Animais , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Drosophila/genética , Drosophila/metabolismo , Microbioma Gastrointestinal/genética , NF-kappa B/genética , Disbiose/genética , Doença de Parkinson/genética , Autofagia/genética
20.
Orphanet J Rare Dis ; 18(1): 390, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102667

RESUMO

BACKGROUND: The availability of multiple treatments for type 1 Gaucher disease increases the need for real-life studies to evaluate treatment efficacy and safety and provide clinicians with more information to choose the best personalized therapy for their patients. AIMS: To determine whether treatment with eliglustat produces, in adult GD1 patients, ans optimal response in daily clinical practice. METHODS: We designed a real-life study with 2 years of follow-up (TRAZELGA [GEE-ELI-2017-01]) to uniformly evaluate the response and adverse events to eliglustat treatment. This study, conducted in 30 patients across Spain and previously treated with other therapies, included the evaluation of safety and efficacy by assessing visceral enlargement, bone disease (DEXA and T and Z scores), concomitant treatments and adverse events, as well as a quality of life evaluation (SF-36). In addition, the quantification of classical biomarkers (chitotriosidase activity, CCL18/PARC and glucosylsphingosine (GluSph)) and new candidates for GD biomarkers (YKL-40, cathepsin S, hepcidin and lipocalin-2 determined by immunoassay) were also assessed. Non-parametric statistical analysis was performed and p < 0.05 was considered statistically significant. MAIN RESULTS: Thirty patients were enrolled in the study. The median age was 41.5 years and the male-female ratio was 1.1:1. 84% of the patients had received ERT and 16% SRT as previous treatment. The most common symptoms at baseline were fatigue (42%) and bone pain (38%), no patient had a bone crisis during the study, and two years after switching, 37% had reduced their use of analgesics. Patient-reported outcomes showed a significant increase in physical function scores (p = 0.027) and physical pain scores (p = 0.010). None of the enrolled patients discontinued treatment due to adverse events, which were mild and transient in nature, mainly gastrointestinal and skin dryness. None of the biomarkers show a significant increase or decompensation after switching. CCL18/PARC (p = 0.0012), YKL-40 (p = 0.00004) and lipocalin-2 (p = 0.0155) improved after two years and GluSph after one year (p = 0.0008) and two years (p = 0.0245) of oral therapy. CONCLUSION: In summary, this real-life study, showed that eliglustat maintains stability and can improve quality of life with few side effects. Significant reductions in classic and other novel biomarkers were observed after two years of therapy.


Assuntos
Doenças Ósseas , Doença de Gaucher , Adulto , Humanos , Masculino , Feminino , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/diagnóstico , Proteína 1 Semelhante à Quitinase-3 , Lipocalina-2 , Seguimentos , Qualidade de Vida , Biomarcadores , Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...