Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.308
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612541

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4-substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4-substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors.


Assuntos
Glicerol , Glicerofosfatos , Simulação de Dinâmica Molecular , Humanos , Ligantes , Glicerol-3-Fosfato O-Aciltransferase , Isoformas de Proteínas , Fosfatos
2.
Mar Drugs ; 22(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535456

RESUMO

Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.


Assuntos
Ciclopentanos , Glicerol/análogos & derivados , Glicerofosfatos , Oxilipinas , Rodófitas , Alga Marinha , Galactose , alfa-Galactosidase , Galactanos , Glucose , Difosfato de Uridina
3.
Biochemistry ; 63(8): 1016-1025, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546289

RESUMO

Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants Keq. Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CH2R keto substituent. The kinetic data show that the phosphite dianion provides the same 7.6 ± 0.1 kcal/mol stabilization of the transition states for enzyme-catalyzed reactions in the forward [reduction of NAD by EtG] and reverse [oxidation of NADH by glycolaldehyde] directions. The experimental evidence that supports a role for phosphite dianion in stabilizing the active closed form of the GPDH (EC) relative to the ca. 6 kcal/mol more unstable open form (EO) is summarized.


Assuntos
Glicerolfosfato Desidrogenase , Glicerofosfatos , Fosfitos , Glicerolfosfato Desidrogenase/química , NAD/metabolismo , Catálise , Cinética
4.
FASEB J ; 38(4): e23470, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354035

RESUMO

Vascular calcification is a major risk factor for cardiovascular disease mortality, with a significant prevalence in chronic kidney disease (CKD). Pharmacological inhibition of histone acetyltransferase has been proven to protect against from vascular calcification. However, the role of Histone Deacetylase 2 (HDAC2) and molecular mechanisms in vascular calcification of CKD remains unknown. An in vivo model of CKD was established using mouse fed with a high adenine and phosphate diet, and an in vitro model was produced using human aortic vascular smooth muscle cells (VSMCs) stimulated with ß-glycerophosphate (ß-GP). HDAC2 expression was found to be reduced in medial artery of CKD mice and ß-GP-induced VSMCs. Overexpression of HDAC2 attenuated OPN and OCN upregulation, α-SMA and SM22α downregulation, and calcium deposition in aortas of CKD. The in vitro results also demonstrated that ß-GP-induced osteogenic differentiation was inhibited by HDAC2. Furthermore, we found that HDAC2 overexpression caused an increase in LC3II/I, a decrease in p62, and an induction of autophagic flux. Inhibition of autophagy using its specific inhibitor 3-MA blocked HDAC2's protective effect on osteogenic differentiation in ß-GP-treated VSMCs. Taken together, these results suggest that HDAC2 may protect against vascular calcification by the activation of autophagy, laying out a novel insight for the molecular mechanism in vascular calcification of CKD.


Assuntos
Glicerofosfatos , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Animais , Camundongos , Histona Desacetilase 2/genética , Osteogênese , Autofagia
5.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409325

RESUMO

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Assuntos
Glicerol , Glicerofosfatos , Metabolismo dos Lipídeos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
6.
J Mech Behav Biomed Mater ; 151: 106354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232670

RESUMO

The aim of this study was to evaluate the effects of supplementing toothpastes containing 1100 ppm F with micrometric or nanometric [beta]-calcium glycerophosphate (ß-CaGPm/ß-CaGPn) on artificial enamel demineralization, using a pH cycling model. Bovine enamel blocks (4 mm × 4 mm, n = 120) selected using initial surface hardness were randomly allocated to ten toothpaste groups (n = 12): without fluoride or ß-CaGPm or ß-CaGPn (Negative control), 1100 ppm F (1100 F), and 1100 ppm F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. Blocks were treated two times per day with toothpaste slurry and subjected to five pH cycles (demineralizing and remineralizing solutions) at 37 °C. The final surface hardness, percentage of surface hardness loss (%SH), cross-sectional hardness (ΔKHN), and profile analysis and lesion depth subsurface were analysed using polarized light microscopy (PLM). Fluoride (F), calcium (Ca), and phosphorus (P) concentrations were also measured. Data were analysed using ANOVA and Student-Newman-Keuls tests ([alpha] = 0.001). Blocks treated with 1100 F toothpaste containing 0.5%ß-CaGPm or 0.25%ß-CaGPn showed with reduced %SH values when compared with those treated with 1100 F alone (p < 0.001). Reduced lesion depths (ΔKHN and PLM) were observed for the slurry made up of 1100 F and 0.25%ß-CaGPn (p < 0.001). The addition of ß-CaGPm and ß-CaGPn did not influence the enamel F concentration, with the 1100 F/0.25%ß-CaGPn group exhibiting the highest Ca and P enamel concentrations (p < 0.001). Based on the findings of this in vitro study, we can conclude that the fluoride toothpaste produced a superior effect when combined at an appropriate ß-CaGP molar ratio. This effect was achieved with a lower proportion of ß-CaGP in the form of nanometric particles.


Assuntos
Fluoretos , Desmineralização do Dente , Humanos , Animais , Bovinos , Fluoretos/farmacologia , Fluoretos/análise , Cremes Dentais/farmacologia , Cálcio , Glicerofosfatos , Estudos Transversais , Desmineralização do Dente/prevenção & controle , Dureza , Suplementos Nutricionais , Concentração de Íons de Hidrogênio
7.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256063

RESUMO

'Inner mitochondrial membrane peptidase 2 like' (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, 'mitochondrial glycerol phosphate dehydrogenase 2' (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD-/- KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD-/- KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD-/- KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD-/- KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD-/- KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD-/- KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD-/- KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD-/- KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD-/- KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD-/- KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.


Assuntos
Atrofia Bulboespinal Ligada ao X , Glicerol , Glicerofosfatos , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Ácido Glutâmico , Glicerolfosfato Desidrogenase/genética , Peptídeo Hidrolases , Fosfatos
8.
Mol Med ; 30(1): 8, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200452

RESUMO

BACKGROUND: Medial vascular calcification is commonly identified in chronic kidney disease (CKD) patients and seriously affects the health and life quality of patients. This study aimed to investigate the effects of protein arginine methyltransferase 3 (PRMT3) on vascular calcification induced by CKD. METHODS: A mice model of CKD was established with a two-step diet containing high levels of calcium and phosphorus. Vascular smooth muscle cells (VSMCs) were subjected to ß-glycerophosphate (ß-GP) treatment to induce the osteogenic differentiation as an in vitro CKD model. RESULTS: PRMT3 was upregulated in VSMCs of medial artery of CKD mice and ß-GP-induced VSMCs. The inhibitor of PRMT3 (SGC707) alleviated the vascular calcification and inhibited the glycolysis of CKD mice. Knockdown of PRMT3 alleviated the ß-GP-induced osteogenic transfomation of VSMCs by the repression of glycolysis. Next, PRMT3 interacted with hypoxia-induced factor 1α (HIF-1α), and the knockdown of PRMT3 downregulated the protein expression of HIF-1α by weakening its methylation. Gain of HIF-1α reversed the PRMT3 depletion-induced suppression of osteogenic differentiation and glycolysis of VSMCs. CONCLUSION: The inhibitory role of PRMT3 depletion was at least mediated by the regulation of glycolysis upon repressing the methylation of HIF-1α.


Assuntos
Glicerofosfatos , Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Camundongos , Hipóxia , Osteogênese/genética , Proteína-Arginina N-Metiltransferases/genética , Insuficiência Renal Crônica/genética , Calcificação Vascular/etiologia
9.
Biophys Chem ; 305: 107141, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070308

RESUMO

PURPOSE: One of the difficulties in the pharmacy field is the delivery of drugs for the eyes. Topical therapy is one of the most common methods for treating eye diseases. Due to their unique properties, including biocompatibility and suitable degradation, hydrogels are appropriate for biological purposes. Platelet-rich plasma (PRP), as a designated concentration of platelets, is in a smaller volume than the plasma and is considered a rich source of growth factor that has been used in recent years, including applications in eye diseases including corneal wound healing, improvement of dry eye and post-LASIK syndrome. METHODS: The present study was performed to fabricate Chitosan (CS) and glycerophosphate (GP) based hydrogels that are temperature-sensitive for PRP and investigate their effect on ocular stem cells. RESULTS: CS-GP-based temperature-sensitive hydrogels containing PRP were successfully fabricated using CS and GP. This hydrogel is liquid at ambient temperature and a gel at ocular temperature. Rheology, FTIR, and SEM tests assessed the properties of the hydrogels. The results of the MTT test showed that the hydrogel made with the optimal formulation was not toxic to LSC cell lines. CONCLUSIONS: Given this, CS-GP-based hydrogels can be applied as a biocompatible formulation in ocular medication administration with increased bioavailability at the ocular surface and topical delivery of PRP.


Assuntos
Quitosana , Oftalmopatias , Humanos , Hidrogéis/farmacologia , Glicerofosfatos , Administração Oftálmica , Disponibilidade Biológica , Temperatura
10.
Sci Rep ; 13(1): 14472, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660110

RESUMO

Ascorbic acid (Asc), dexamethasone (Dex) and ß-glycerophosphate (ß-Gly) are commonly used to promote osteogenic behaviour by osteoblasts in vitro. According to the literature, several osteosarcoma cells lines appear to respond differently to the latter with regards to proliferation kinetics and osteogenic gene transcription. Unsurprisingly, these differences lead to contrasting data between publications that necessitate preliminary studies to confirm the phenotype of the chosen osteosarcoma cell line in the presence of Asc, Dex and ß-Gly. The present study exposed Saos-2 cells to different combinations of Asc, Dex and ß-Gly for 14 days and compared the response with immortalised human mesenchymal stromal/stem cells (MSCs). Cell numbers, cytotoxicity, mineralised matrix deposition and cell proliferation were analysed to assess osteoblast-like behaviour in the presence of Asc, Dex and ß-Gly. Additionally, gene expression of runt-related transcription factor 2 (RUNX2); osteocalcin (OCN); alkaline phosphatase (ALP); phosphate regulating endopeptidase homolog X-linked (PHEX); marker of proliferation MKI67 and proliferating cell nuclear antigen (PCNA) was performed every two days during the 14-day cultures. It was found that proliferation of Saos-2 cells was significantly decreased by the presence of ß-Gly which contrasted with hMSCs where no change was observed. Furthermore, unlike hMSCs, Saos-2 cells demonstrated an upregulated expression of late osteoblastic markers, OCN and PHEX that suggested ß-Gly could affect later stages of osteogenic differentiation. In summary, it is important to consider that ß-Gly significantly affects key cell processes of Saos-2 when using it as an osteoblast-like cell model.


Assuntos
Genes cdc , Osteogênese , Humanos , Glicerofosfatos/farmacologia , Linhagem Celular
11.
J Dent ; 138: 104719, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741503

RESUMO

OBJECTIVES: This in situ study aimed to assess the remineralizing effect of a fluoride toothpaste supplemented with ß-calcium glycerophosphate in both micro (ß-CaGPm) and nano-sized forms (ß-CaGPn). METHODS: This blind and cross-over study was performed in 4 phases, each spanning 3 days. Twelve volunteers utilized palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned to the following treatment groups: Placebo (no F-ß-CaGPm-ß-CaGPn); 1100 ppm F alone (1100F); 1100F plus 0.5% micrometric ß-CaGP (1100F-0.5%ß-CaGPm); and 1100F plus 0.25%nano-sized ß-CaGP (1100F-0.25%ß-CaGPn). Participants were instructed to brush their natural teeth with the palatal appliances in the mouth for 1 min (3 times/day), ensuring that the enamel blocks were exposed to the natural toothpaste slurries. Following each phase, evaluations were conducted to determine the percentage of surface hardness recovery (%SHR), integrated recovery of subsurface hardness (ΔIHR), profile subsurface lesion through polarized light microscopy (PLM), as well as fluoride (F), calcium (Ca), and phosphorus (P) concentrations within the enamel. Data were analyzed by ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: Treatment with 1100F-0.25%ß-CaGPn resulted in %SHR ∼69 % and ∼40 % higher when compared to 1100F and 1100F-0.5%ß-CaGPm (p < 0.001). The reduction in lesion body (ΔIHR; PLM) was ∼40 % higher with 1100F-0.25%ß-CaGPn (p < 0.001) compared to 1100F. The addition of ß-CaGPm and ß-CaGPn did not influence enamel F concentration (p > 0.001). Treatment with 1100F-0.25%ß-CaGPn led to an increase in the concentration of Ca and P in the enamel (p < 0.001). CONCLUSION: The addition of 0.25%ß-CaGPn into 1100F formulation increased the bioavailability of calcium and phosphate, promoting a higher remineralizing effect. CLINICAL SIGNIFICANCE: Toothpaste containing 1100F-0.25%ß-CaGPn showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric ß-CaGP could be a strategy for patients at caries activity.


Assuntos
Fluoretos , Cremes Dentais , Animais , Bovinos , Humanos , Cálcio/farmacologia , Cariostáticos/farmacologia , Estudos Cross-Over , Esmalte Dentário , Fluoretos/farmacologia , Glicerofosfatos/farmacologia , Dureza , Remineralização Dentária/métodos , Cremes Dentais/farmacologia , Cremes Dentais/uso terapêutico
12.
Genes (Basel) ; 14(9)2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37761845

RESUMO

The Yorkshire pigs, renowned for their remarkable growth rate, low feed conversion ratio (FCR), and high meat production, emerge as a novel preference for paternal breeding. In this study, we found that purebred paternal Yorkshire pigs (PY) surpass the purebred Duroc breed in terms of growth rate. Specifically, purebred PY attain a weight of 100 kg at an earlier age compared to purebred Duroc (Male, 145.07 vs. 162.91; Female, 145.91 vs. 167.57; p-value < 0.01). Furthermore, different hybrid combinations suggest that offspring involving purebred PY exhibit superior growth performance. Compared with purebred Duroc, the offspring of purebred PY have an earlier age in days (173.23 vs. 183.54; p-value < 0.05) at the same slaughter weight. The changes of plasma metabolites of 60-day-old purebred boars in the two sire-breeds showed that 1335 metabolites in plasma were detected. Compared with Duroc, 28 metabolites were down-regulated and 49 metabolites were up-regulated in PY. Principal component analysis (PCA) discerned notable dissimilarities in plasma metabolites between the two sire-breeds of pigs. The levels of glycerol 3-phosphate choline, cytidine, guanine, and arachidonic acid increased significantly (p-value < 0.05), exerting an impact on their growth and development. According to our results, PY could be a new paternal option as a terminal sire in three-way cross system.


Assuntos
Colina , Glicerofosfatos , Feminino , Masculino , Animais , Suínos/genética , China , Ácido Araquidônico , Guanina
13.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762132

RESUMO

Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, ß-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, ß-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, ß-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L-1 of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L-1 ß-glycerolphosphate, 75 µmol L-1 ascorbic acid and 10 nmol L-1 dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.


Assuntos
Calcinose , Cemento Dentário , Humanos , Cálcio , Glicerofosfatos , Osteogênese , Diálise Renal , Periodonto , Cálcio da Dieta , Ácido Ascórbico/farmacologia , Dexametasona/farmacologia
14.
Colloids Surf B Biointerfaces ; 224: 113193, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773410

RESUMO

Regeneration of neural tissue and recovery of lost functions following an accident or disease to the central nervous system remains a major challenge worldwide, with limited treatment options available. The main reason for the failure of conventional therapeutic techniques to regenerate neural tissue is the presence of blood-brain barrier separating nervous system from systemic circulation and the limited capacity of self-regeneration of the nervous system. Injectable hydrogels have shown great promise for neural tissue engineering given their suitability for minimally invasive in situ delivery and tunable mechanical and biological properties. Chitosan (CS)/ß-glycerophosphate (ß-GP) hydrogels have been extensively investigated and shown regenerative potential in a wide variety of tissues such as bone and cartilage tissue engineering. However, the potential of CS/ß-GP hydrogels has never been tested for injectable neural tissue engineering applications. In the present study, CS/ß-GP hydrogels, consisting of 0.5-2% CS and 2-3% ß-GP, were prepared and characterized to investigate their suitability for injectable neural tissue engineering applications. The resulting CS/ß-GP-hydrogels showed a varying range of properties depending on the CS/ß-GP blend ratio. In particular, the 0.5%:3% and 0.75%:3% CS/ß-GP hydrogels underwent rapid gelation (3 min and 5 min, respectively) at physiological temperature (37 °C) and pH (7.4). They also had suitable porosity, osmolality, swelling behavior and biodegradation for tissue engineering. The biocompatibility of hydrogels was determined in vitro using PC12 cells, an immortalized cell line with neuronal cell-like properties, revealing that these hydrogels supported cell growth and proliferation. In conclusion, the thermoresponsive 0.5%:3% and 0.75%:3% CS/ß-GP hydrogels had the greatest potential for neural tissue engineering.


Assuntos
Quitosana , Animais , Ratos , Quitosana/química , Glicerofosfatos/química , Hidrogéis/farmacologia , Hidrogéis/química , Sistema Nervoso , Engenharia Tecidual/métodos , Células PC12
15.
Environ Sci Pollut Res Int ; 30(9): 23096-23109, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36316554

RESUMO

Stimulating indigenous microbes to reduce aqueous U(VI) to insoluble U(IV) by adding an electron donor has been applied as an applicable strategy to remediate uranium-contaminated groundwater in situ. However, biogenic U(IV) minerals are susceptible to oxidative remobilization after exposure to oxygen. To enhance the stability of the end product, glycerol phosphate (GP) was selected to treat artificial uranium-containing groundwater at different pH values (i.e., 7.0 and 5.0) with glycerol (GY) as the control group. The results revealed that removal ratios of uranium with GP were all higher than those with GY, and reduced crystalline U(IV)-phosphate and U(VI)-phosphate minerals (recalcitrant to oxidative remobilization) were generated in the GP groups. Although bioreduction efficiency was influenced at pH 5.0, the stability of the end product with GP was elevated significantly compared with that with GY. Mechanism analysis demonstrated that GP could activate bioreduction and biomineralization of the microbial community, and two stages were included in the GP groups. In the early stage, bioreduction and biomineralization were both involved in the immobilization process. Subsequently, part of the U(VI) precipitate was gradually reduced to U(IV) precipitate by microorganisms. This work implied that the formation of U-phosphate minerals via bioreduction coupled with biomineralization potentially offers a more effective strategy for remediating uranium-contaminated groundwater with long-term stability.


Assuntos
Água Subterrânea , Urânio , Biodegradação Ambiental , Urânio/análise , Biomineralização , Glicerol , Elétrons , Oxirredução , Água Subterrânea/química , Minerais , Glicerofosfatos , Concentração de Íons de Hidrogênio , Fosfatos
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1418-1425, 2022 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-36210717

RESUMO

OBJECTIVE: To compare a new thermosensitive recombinant human amelogenin (rhAm) carrier and traditional propylene glycol alginate (PGA) carrier for their characteristics, antibacterial activity, and biocompatibility with human periodontal membrane fibroblasts. METHODS: PGA-rhAm was prepared by mixing 3.3% PGA and rhAm, and CS-ßGP-rhAm was prepared by mixing 2% chitosan (CS) with rhAm and then with 60% ß-sodium glycerophosphate solution (ßGP) as the crosslinking agent. The biophysical properties of the prepared carriers were characterized, and their antibacterial activity was assessed by observing Staphylococcus aureus growth. The biocompatibility of the carriers was evaluated in human periodontal membrane fibroblasts (hPDLFs) using CCK8 assay and scratch test, and mRNA and protein expressions of osteogenic genes of the cells incubated with the carriers were detected using RT-qPCR and Western blotting; osteogenic differentiation of the cells was detected using alkaline phosphatase staining. RESULTS: PGA-rhAm had a viscosity value of 3.262±0.055 Pa.s. CS-ßGP-rhAm had a solidification capacity of 6 min at 37 ℃ with a pH value close to that of the oral cavity and a swelling rate of about 90%. CS-ß GP-rhAm maintained sustained release of rhAm for over 2 weeks with a self-degradation time over 3 weeks. CS-ßGPrhAm more effectively inhibited the growth of S. aureus than rhAm-loaded PGA. While PGA did not obviously affect the proliferation of hPDLFs, both CS-ßGP and CS-ßGP-rhAm significantly promoted the cell proliferation(P < 0.001). Scratch test showed that after rhAm loading, both CS-ßGP and PGA promoted cell migration (P < 0.01). CS-ßGP-rhAm significantly enhanced the mRNA expressions of RUNX2 and OCN mRNA level and the protein expressions of Ki67, RUNX2, collagen I, and ß-catenin (P < 0.05); PGA-rhAm only enhanced RUNX2 (P < 0.05) and OCN (P < 0.01) mRNA expressions without significant effects on the protein expressions. Alkaline phosphatase staining results showed that CS-ßGP, but not PGA, promoted osteogenic differentiation of hPDLFs. CONCLUSION: CS-ßGP carrier is capable of sustained release of rhAm, inhibiting the growth of S. aureus, and improving the biological activity of hPDLFs without affecting the bioactivity of rhAm after drug loading.


Assuntos
Quitosana , Subunidade alfa 1 de Fator de Ligação ao Core , Alginatos , Fosfatase Alcalina , Amelogenina , Antibacterianos/farmacologia , Diferenciação Celular , Células Cultivadas , Quitosana/química , Quitosana/farmacologia , Colágeno , Preparações de Ação Retardada , Glicerofosfatos , Humanos , Antígeno Ki-67 , Osteogênese , Ligamento Periodontal , RNA Mensageiro , Staphylococcus aureus , beta Catenina
17.
J Bacteriol ; 204(10): e0024722, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094307

RESUMO

The disease-producing capacity of the opportunistic pathogen Enterococcus faecalis is enhanced by the ability of the bacterium to evade killing by antimicrobial agents. Survival of E. faecalis in the presence of the human antimicrobial enzyme lysozyme is mediated in part by the site 2 metalloprotease Eep; however, a complete model of enterococcal lysozyme resistance has not been elucidated. To better understand the molecular basis for lysozyme resistance in E. faecalis, we analyzed Δeep suppressor mutants that acquire resistance to lysozyme through mutation of the gene OG1RF_11713, a predicted teichoic acid biosynthesis-encoding gene located within the variable region of the enterococcal polysaccharide antigen (epa) locus. Sequence comparisons revealed that OG1RF_11713 is most similar to the cytidine-5'-diphosphate (CDP)-glycerol:poly-(glycerolphosphate)glycerophosphotransferase TagF from Staphylococcus epidermidis. Inactivation of OG1RF_11713 in both the wild-type and Δeep genetic backgrounds was sufficient to increase the resistance of E. faecalis OG1RF to lysozyme. Minimal amounts of N-acetylgalactosamine were detectable in cell wall carbohydrate extracts of OG1RF_11713 deletion mutants, and this was associated with a reduction in negative cell surface charge. Targeted disruption of OG1RF_11713 was also associated with increased susceptibility to the antibiotic polymyxin B and membrane-targeting detergents and decreased susceptibility to the lantibiotic nisin. This work implicates OG1RF_11713 as a major determinant of cell envelope integrity and provides further validation that lysozyme resistance is intrinsically linked to the modification of enterococcal cell wall polysaccharides. IMPORTANCE Enterococcus faecalis is a leading cause of health-care-associated infections for which there are limited treatment options. E. faecalis is resistant to several antibiotics and to high concentrations of the human antimicrobial enzyme lysozyme. The molecular mechanisms that mediate lysozyme resistance in E. faecalis are complex and remain incompletely characterized. This work demonstrates that a gene located within the variable region of the enterococcal polysaccharide antigen locus of E. faecalis strain OG1RF (OG1RF_11713), which is predicted to encode a component of the teichoic acid biosynthesis machinery, is part of the lysozyme resistance circuitry and is important for enterococcal cell wall integrity. These findings suggest that OG1RF_11713 is a potential target for new therapeutic strategies to combat enterococcal infections.


Assuntos
Enterococcus faecalis , Nisina , Humanos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Nisina/genética , Muramidase/metabolismo , Detergentes/metabolismo , Polimixina B , Acetilgalactosamina , Glicerofosfatos , Difosfatos/metabolismo , Glicerol/metabolismo , Polissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fenótipo , Citidina , Cistina Difosfato/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Cell Transplant ; 31: 9636897221126088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36178143

RESUMO

The physicochemical stimulation of acupoints is a widespread treatment strategy for different diseases, such as sciatica. Its efficacy is mainly based on the temporal and spatial modulation of the physicochemical properties of the acupoints. The existing therapies based on the stimulation of acupoints have certain disadvantages. Therefore, in this study, injectable dexamethasone (DXM)- and magnetic Fe3O4 nanoparticles-loaded chitosan/ß-glycerophosphate (CS/GP) thermal crosslinking hydrogels were prepared, thereby improving the performance of embedding materials. The sciatica rat models were established to compare the therapeutic effects of hydrogels and catgut. The DXM or Fe3O4-loaded CS/GP hydrogels were compared in terms of their gelation kinetics, release kinetics, magnetic responsiveness in-vitro, and biocompatibility as well as their analgesic effects on the chronic constriction injury of the sciatic nerve (CCI) rats in-vivo. The CS/GP/Fe3O4/DXM hydrogel showed comparable gelation kinetics and good magnetic responsiveness in-vitro. This hydrogel could relieve sciatica by reducing the expression levels of inflammatory factors in serum, inhibiting the p38MAPK (p38, mitogen-activated protein kinase) phosphorylation, and decreasing the expression level of the P2X4 receptor (P2X4R) in the spinal dorsal horn. In conclusion, the DXM or Fe3O4-loaded CS/GP hydrogels can be considered as a treatment option for the physiochemical stimulation therapy of acupoints to improve sciatica.


Assuntos
Quitosana , Ciática , Pontos de Acupuntura , Analgésicos , Animais , Quitosana/química , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Glicerofosfatos , Hidrogéis/química , Fenômenos Magnéticos , Proteínas Quinases Ativadas por Mitógeno , Dor , Ratos , Receptores Purinérgicos P2X4 , Ciática/tratamento farmacológico
19.
Essays Biochem ; 66(5): 673-681, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920211

RESUMO

Systemic acquired resistance (SAR), a type of long-distance immunity in plants, provides long-lasting resistance to a broad spectrum of pathogens. SAR is thought to involve the rapid generation and systemic transport of a mobile signal that prepares systemic parts of the plant to better resist future infections. Exploration of the molecular mechanisms underlying SAR have identified multiple mobile regulators of SAR in the last few decades. Examination of the relationship among several of these seemingly unrelated molecules depicts a forked pathway comprising at least two branches of equal importance to SAR. One branch is regulated by the plant hormone salicylic acid (SA), and the other culminates (based on current knowledge) with the phosphorylated sugar derivative, glycerol-3-phosphate (G3P). This review summarizes the activities that contribute to pathogen-responsive generation of SA and G3P and the components that regulate their systemic transport during SAR.


Assuntos
Resistência à Doença , Ácido Salicílico , Regulação da Expressão Gênica de Plantas , Glicerol , Glicerofosfatos , Fosfatos/metabolismo , Doenças das Plantas , Reguladores de Crescimento de Plantas , Plantas/metabolismo , Ácido Salicílico/metabolismo , Açúcares
20.
J Lipid Res ; 63(9): 100251, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841948

RESUMO

The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates that CrrAB activation not only stimulates LPS modification but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly upregulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the palmitoylation of PGs and lipid A within the OM through upregulated PagP, which functions together to form an outer membrane barrier critical for bacterial survival.


Assuntos
Proteínas de Escherichia coli , Lipoilação , Aciltransferases/metabolismo , Antibacterianos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicerofosfatos , Glicerofosfolipídeos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Palmitatos/metabolismo , Polimixinas/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...