Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.941
Filtrar
1.
Biochemistry (Mosc) ; 89(Suppl 1): S90-S111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621746

RESUMO

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.


Assuntos
Halogênios , Peroxidases , Peroxidases/metabolismo , Halogênios/metabolismo , Peroxidase/metabolismo , Peroxidase de Eosinófilo , Antioxidantes
2.
Mikrochim Acta ; 191(5): 264, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622377

RESUMO

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Assuntos
Cobalto , Nanopartículas Metálicas , Óxidos , Tiofanato , Nanopartículas Metálicas/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Prata/química , Peroxidases
3.
Biosens Bioelectron ; 255: 116259, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574559

RESUMO

Carbon-based nanozymes possessing peroxidase-like activity have attracted significant interest because of their potential to replace native peroxidases in biotechnology. Although various carbon-based nanozymes have been developed, their relatively low catalytic efficiency needs to be overcome to realize their practical utilization. Here, inspired by the elemental uniqueness of Cu and the doped elements N and S, as well as the active site structure of Cu-centered oxidoreductases, we developed a new carbon-based peroxidase-mimicking nanozyme, single-atom Cu-centered N- and S-codoped reduced graphene oxide (Cu-NS-rGO), which preserved many Cu-N4 and Cu-N4S active sites and showed dramatically high peroxidase-like activity without any oxidase-like activity, yielding up to 2500-fold higher catalytic efficiency (kcat/Km) than that of pristine rGO. The high catalytic activity of Cu-NS-rGO might be attributed to the acceleration of electron transfer from Cu single atom as well as synergistic effects from both Cu-N4 and Cu-N4S active sites, which was theoretically confirmed by Gibbs free energy calculations using density functional theory. The prepared Cu-NS-rGO was then used to construct an electrochemical bioassay system for detecting choline and acetylcholine by coupling with the corresponding oxidases. Using this system, both target molecules were selectively determined with high sensitivity that was sufficient to clinically determine their levels in physiological fluids. Overall, this study will facilitate the development of nanocarbon-based nanozymes and their electrochemical biosensing applications, which can be extended to the development of miniaturized devices in point-of-care testing environments.


Assuntos
Técnicas Biossensoriais , Grafite , Peroxidase , Peroxidase/química , Domínio Catalítico , Peroxidases/química , Oxirredutases , Carbono/química
4.
Biosens Bioelectron ; 255: 116271, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583355

RESUMO

The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.


Assuntos
Técnicas Biossensoriais , Diclorofeno , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Peroxidases/química , Peroxidase , Colorimetria/métodos , Fenóis , Peróxido de Hidrogênio/química
5.
J Phys Chem B ; 128(14): 3383-3397, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563384

RESUMO

Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.


Assuntos
Histidina , Poliquetos , Animais , Histidina/química , Isoenzimas/metabolismo , Peróxido de Hidrogênio/metabolismo , Hemoglobinas/química , Peroxidases/química , Peroxidase/química , Poliquetos/química , Poliquetos/metabolismo , Cristalografia por Raios X
6.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612898

RESUMO

The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 °C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.


Assuntos
Arabidopsis , Fragaria , Arabidopsis/genética , Fragaria/genética , Filogenia , Peroxidases , Antioxidantes
7.
Analyst ; 149(8): 2223-2226, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506234

RESUMO

Nanozymes have been widely used as enzyme substitutes. Based on a comprehensive literature survey of 261 publications, we report the significant differences in the Michaelis-Menten constants (Km) between peroxidase-mimicking nanozymes and horseradish peroxidase (HRP). Further, these differences were not considered in more than 60% of the publications for analytical developments. As a result, nanozymes' catalytic activity is limited, resulting in a potentially higher limit of detection (LOD). We used a peroxidase-mimicking Au@Pt nanozyme, which has Km for TMB comparable with HRP and three orders of magnitude higher Km for H2O2. Using the Au@Pt nanozyme as a label for immunoassays, non-optimized nanozyme substrate concentrations led to 30 times higher LOD compared to optimized conditions. The results confirm the necessity of measuring nanozymes' kinetic parameters and the corresponding adjustment of substrate concentrations for highly sensitive detection.


Assuntos
Peróxido de Hidrogênio , Peroxidases , Peróxido de Hidrogênio/química , Catálise , Peroxidase/química , Peroxidase do Rábano Silvestre/química , Colorimetria/métodos
8.
Biosens Bioelectron ; 253: 116161, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457864

RESUMO

We herein describe a novel electrochemical strategy to detect hydrogen peroxide (H2O2) by utilizing the peroxidase-mimicking activity of cerium oxide nanoparticles (CeO2 NP) and reduced graphene oxide (rGO). Particularly, CeO2 NP/rGO nanocomposites were deposited on the commercial electrode by a very convenient and direct electrochemical reduction of graphene oxide. Due to the peroxidase-mimicking activity of CeO2 NP and the outstanding electrochemical properties of reduced graphene oxide, the reduction current of H2O2 was greatly enhanced. Based on this strategy, we reliably determined H2O2 down to 1.67 µM with excellent specificity and further validated its practical capabilities by robustly detecting H2O2 present in heterogeneous human serum samples. We believe that this work could serve as a new facile platform for H2O2 detection.


Assuntos
Técnicas Biossensoriais , Cério , Grafite , Nanocompostos , Humanos , Peróxido de Hidrogênio , Grafite/química , Cério/química , Nanocompostos/química , Peroxidases , Técnicas Eletroquímicas
9.
Dalton Trans ; 53(12): 5624-5631, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38440932

RESUMO

Noble metal nanomaterials have been widely demonstrated to possess intrinsic enzyme-like properties and have been increasingly applied in the fields of analysis and biomedicine. However, current exploration of high-activity noble metal nanozymes is still far from adequate. The construction of hollow structures and adjustment of their elemental composition are effective ways to improve the specific activity (SA) of nanozymes. In this study, trimetallic PtPdAu hollow nanorods (HNRs) were developed using a galvanic replacement reaction and Kirkendall effect. The catalytic experiment showed that the PtPdAu HNRs possessed outstanding peroxidase-like performance and their SA value was up to 563.71 U mg-1, which is remarkable among various previously reported nanozymes and higher than that of monometallic or bimetallic counterparts with similar structure and size prepared in this study. Electron paramagnetic resonance (EPR)measurements showed that the PtPdAu HNRs could contribute to the formation of hydroxyl radicals (˙OH) in catalyzing hydrogen peroxide. When using PtPdAu HNRs as a nanozyme in the colorimetric detection of H2O2 and ascorbic acid (AA), the limits of detection were as low as 1.8 µM and 0.068 µM, respectively. This study demonstrates that PtPdAu HNRs are high-activity nanozymes and have the potential to be applied in the field of analysis.


Assuntos
Nanotubos , Peroxidase , Peroxidase/química , Colorimetria , Peróxido de Hidrogênio/química , Peroxidases/química , Corantes/química
10.
Anal Chem ; 96(11): 4673-4681, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451931

RESUMO

Perfluorooctanesulfonic acid potassium salt (PFOS) residues in ecosystems over long periods are of increasing concern and require a selective and stable optical probe for monitoring. Herein, two functional groups (-F and -NH2) with opposite electronic modulation ability were introduced into Fe/Zn-BDC (denoted as Fe/Zn-BDC-F4 and Fe/Zn-BDC-NH2, respectively) to tailor the coordination environment of the Fe metal center, further regulating the nanozyme activity efficiently. Notably, the peroxidase-like activity is related to the coordination environment of the nanozymes and obeys the following order Fe/Zn-BDC-F4 > Fe/Zn-BDC > Fe/Zn-BDC-NH2. Based on the excellent peroxidase-like activity of Fe/Zn-BDC-F4 and the characteristics of being rich in F atoms, a rapid, selective, and visible colorimetric method was developed for detecting PFOS with a detection limit of 100 nM. The detection mechanism was attributed to various interaction forces between Fe/Zn-BDC-F4 and PFOS, including electrostatic interactions, Fe-S interactions, Fe-F bonds, and halogen bonds. This work not only offers new insights into the atomic-scale rational design of highly active nanozymes but also presents a novel approach to detecting PFOS in environmental samples.


Assuntos
Ecossistema , Potássio , Colorimetria , Peroxidases , Zinco
11.
ACS Nano ; 18(11): 8083-8098, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456744

RESUMO

Active polymetallic atomic clusters can initiate heterogeneous catalytic reactions in the tumor microenvironment, and the products tend to cause manifold damage to cell metabolic functions. Herein, bimetallic PtPd atomic clusters (BAC) are constructed by the stripping of Pt and Pd nanoparticles on nitrogen-doped carbon and follow-up surface PEGylation, aiming at efficacious antineoplastic therapy through heterogeneous catalytic processes. After endocytosed by tumor cells, BAC with catalase-mimic activity can facilitate the decomposition of endogenous H2O2 into O2. The local oxygenation not only alleviates hypoxia to reduce the invasion ability of cancer cells but also enhances the yield of •O2- from O2 catalyzed by BAC. Meanwhile, BAC also exhibit peroxidase-mimic activity for •OH production from H2O2. The enrichment of reactive oxygen species (ROS), including the radicals of •OH and •O2-, causes significant oxidative cellular damage and triggers severe apoptosis. In another aspect, intrinsic glutathione (GSH) peroxidase-like activity of BAC can indirectly upregulate the level of lipid peroxides and promote ferroptosis. Such deleterious redox dyshomeostasis caused by ROS accumulation and GSH consumption also results in immunogenic cell death to stimulate antitumor immunity for metastasis suppression. Collectively, this paradigm is expected to inspire more facile designs of polymetallic atomic clusters in disease therapy.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Humanos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Apoptose , Peroxidases , Antineoplásicos/farmacologia , Catálise , Glutationa , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
12.
BMC Med Genomics ; 17(1): 77, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515109

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of lung adenocarcinoma (LUAD) and are often associated with poorer clinical outcomes. This study aimed to screen for CAF-specific genes that could serve as promising therapeutic targets for LUAD. METHODS: We established a single-cell transcriptional profile of LUAD, focusing on genetic changes in fibroblasts. Next, we identified key genes associated with fibroblasts through weighted gene co-expression network analysis (WGCNA) and univariate Cox analysis. Then, we evaluated the relationship between glutathione peroxidase 8 (GPX8) and clinical features in multiple independent LUAD cohorts. Furthermore, we analyzed immune infiltration to shed light on the relationship between GPX8 immune microenvironment remodeling. For clinical treatment, we used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the immunotherapy prediction efficiency of GPX8. After that, we screened potential therapeutic drugs for LUAD by the connectivity map (cMAP). Finally, we conducted a cell trajectory analysis of GPX8+ CAFs to show their unique function. RESULTS: Fibroblasts were found to be enriched in tumor tissues. Then we identified GPX8 as a key gene associated with CAFs through comprehensive bioinformatics analysis. Further analysis across multiple LUAD cohorts demonstrated the relationship between GPX8 and poor prognosis. Additionally, we found that GPX8 played a role in inducing the formation of an immunosuppressive microenvironment. The TIDE method indicated that patients with low GPX8 expression were more likely to be responsive to immunotherapy. Using the cMAP, we identified beta-CCP as a potential drug-related to GPX8. Finally, cell trajectory analysis provided insights into the dynamic process of GPX8+ CAFs formation. CONCLUSIONS: This study elucidates the association between GPX8+ CAFs and poor prognosis, as well as the induction of immunosuppressive formation in LUAD. These findings suggest that targeting GPX8+ CAFs could potentially serve as a therapeutic strategy for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Fibroblastos , Imunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral , Prognóstico , Peroxidases
13.
Anal Chim Acta ; 1297: 342386, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438231

RESUMO

In this work, we developed a new strategy to fabricate a series of transition metallic nanoparticles (NPs) embedded on B, N co-doped carbon nanotubes (CNTs) arrays modified flexible carbon fiber electrodes (M@BNCNTs/CF, M = Co, Fe, Ni) via facile inkjet printing assisted with chemical vapor deposition using Ionic liquid as solvent of printing ink and heteroatom dopants. Furthermore, Pt NPs via impregnation-thermal reduction process was anchored on the surface of Co@BNCNTs/CF (Pt-Co@BNCNTs/CF), which holds enhanced peroxidase-like activity and could be directly used as freestanding electrode to detect H2O2, exhibiting a low detection limit of 0.19 µM with wide linear range (0.5 µM-9.4 mM), and high sensitivity (1679 µA cm-2 mM-1). The excellent sensing performance of Pt-Co@BNCNTs/CF is attributed to the Pt, Co NPs anchored on CNTs with great catalytic activity, and the doping B, N would cause graphitic carbon with more defects to improve its inherent reactivity toward H2O2. Besides, CNTs arrays with high surface area also enlarge the exposure of active sites. Moreover, the Pt-Co@NBCNTs/CF microelectrode has been successfully applied in monitoring H2O2 secreted from human colonic cancer cells and normal colonic epithelial cells, which could offer crucial data for distinguishing various cell types and identifying cancer cells from normal cells. This work opens a new horizon to fabricate flexible miniaturized sensing device for extracellular analysis and offers an extended strategy to fabricate other metallic NPs embedded in heteroatoms doped CNTs functionalized flexible fiber electrode, by choosing diverse metal ions and ILs as inkjet printing precursors.


Assuntos
Nanotubos de Carbono , Humanos , Microeletrodos , Peróxido de Hidrogênio , Transporte Biológico , Peroxidases
14.
Microb Cell Fact ; 23(1): 76, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461254

RESUMO

BACKGROUND: Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the ß-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS: Glucose oxidase was successfully expressed and co-localized with ß-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS: This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.


Assuntos
Aspergillus niger , Aspergillus , beta-Frutofuranosidase , Aspergillus niger/genética , Glucose Oxidase/genética , Oligossacarídeos , Peroxidases , Glucose
15.
Anal Chim Acta ; 1298: 342408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462333

RESUMO

BACKGROUND: In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS: A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE: This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.


Assuntos
Ácido 4-Aminobenzoico , Inibidores de Glicosídeo Hidrolases , Inibidores de Glicosídeo Hidrolases/farmacologia , Glucose Oxidase , Reprodutibilidade dos Testes , Colorimetria/métodos , Peroxidases , Solventes , Peróxido de Hidrogênio
16.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38507928

RESUMO

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Assuntos
Técnicas Biossensoriais , Polímeros Molecularmente Impressos , Colorimetria/métodos , Peroxidase/química , Peroxidases
17.
ACS Appl Mater Interfaces ; 16(13): 15959-15969, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511635

RESUMO

Perfluorooctanesulfonate (PFOS), an emerging organic contaminant, necessitates robust on-site detection strategies to safeguard human health and ecological balance. This study introduces a novel point-of-care testing (POCT) platform, combining a hydrogel kit with nanozymes and smartphone technology, for the highly sensitive detection of PFOS. The strategy utilizes copper-substituted cobalt-based Prussian blue analogue nanoboxes (CuCo-PBA NBs), which exhibit intricate hollow structures and remarkable peroxidase-like catalytic activity, efficiently catalyzing the oxidation of chromogenic substrates with hydrogen peroxide (H2O2). Density functional theory calculations elucidate the adsorption dynamics of H2O2 on CuCo-PBA NBs, identifying the factors that improve the catalytic efficiency. The colorimetric POCT platform, integrating the hydrogel kit with a smartphone interface, demonstrates practical utility and achieves a detection limit of 1.43 × 10-8 mol L-1 for PFOS. This research not only presents a new nanozyme design for PFOS detection in diverse matrices, such as lake water, whole blood, urine, and milk, but also paves the way for developing a portable and efficient POCT platform for a variety of emerging contaminants.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Hidrogéis , Peróxido de Hidrogênio , Humanos , Oxirredutases , Peroxidase/química , Peroxidases , Cobalto/química , Colorimetria
18.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
19.
ACS Appl Mater Interfaces ; 16(12): 14645-14660, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478795

RESUMO

The greater advantages and wide applications of zero-dimensional nanodots inspire researchers to develop new materials. Therefore, novel borophene quantum dots (QDs) were prepared by a hydrothermal liquid exfoliation technique using water medium. The borophene QDs proved to be highly stable in water medium for more than 120 days. The synthesized borophene QDs revealed intrinsic peroxidase mimetic activity using two chromogenic substrates, 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS). The excellent intrinsic peroxidase activity toward TMB and ABTS substrates was executed using optimal reaction conditions (pH, borophene QDs' concentration, incubation time, and temperature). The formation of hydroxyl radicals in the presence of H2O2 upon TMB and ABTS oxidation played a significant role in the peroxidase reaction. The borophene QDs further proved to be successful for the colorimetric detection of antibiotics (oxytetracycline and tetracycline) using both TMB and ABTS peroxidase substrates. The limit of detection (LOD) for oxytetracycline and tetracycline was found to be 1.10 and 1.02 µM using TMB and 1.03 and 1.02 µM using ABTS chromogenic substrates, respectively. In addition, the fluorescence sensing of oxytetracycline and tetracycline over borophene QDs was also examined. The high fluorescence of borophene QDs (turn ON) was quenched (turn OFF) by oxytetracycline and tetracycline through the inner filter effect mechanism. The LOD of the fluorescence sensing of oxytetracycline and tetracycline was 1.14 and 1.08 µM, respectively. Interestingly, the borophene QDs could be used for the sensitive and selective colorimetric and fluorometric sensing of oxytetracycline and tetracycline after 120 days of storage. The synthesized borophene QDs with long-term stability and real sample analysis provide new insight as nanozymes with higher peroxidase mimetic and fluorescence performance and can be further exploited for medical diagnosis and environmental toxicants' detection.


Assuntos
Benzotiazóis , Oxitetraciclina , Pontos Quânticos , Ácidos Sulfônicos , Peroxidase , Compostos Cromogênicos , Peróxido de Hidrogênio/análise , Peroxidases , Antibacterianos/análise , Tetraciclina , Colorimetria/métodos , Água
20.
Environ Geochem Health ; 46(3): 102, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433158

RESUMO

Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.


Assuntos
Benzotiazóis , Peróxido de Hidrogênio , Peroxidase , Picratos , Ácidos Sulfônicos , Animais , Humanos , Simulação de Acoplamento Molecular , Peroxidases , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...