Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205.388
Filtrar
1.
J Nanobiotechnology ; 22(1): 106, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468300

RESUMO

Understanding the intricate nanoscale architecture of neuronal myelin during central nervous system development is of utmost importance. However, current visualization methods heavily rely on electron microscopy or indirect fluorescent method, lacking direct and real-time imaging capabilities. Here, we introduce a breakthrough near-infrared emissive curcumin-BODIPY derivative (MyL-1) that enables direct visualization of myelin structure in brain tissues. The remarkable compatibility of MyL-1 with stimulated emission depletion nanoscopy allows for unprecedented super-resolution imaging of myelin ultrastructure. Through this innovative approach, we comprehensively characterize the nanoscale myelinogenesis in three dimensions over the course of brain development, spanning from infancy to adulthood in mouse models. Moreover, we investigate the correlation between myelin substances and Myelin Basic Protein (MBP), shedding light on the essential role of MBP in facilitating myelinogenesis during vertebral development. This novel material, MyL-1, opens up new avenues for studying and understanding the intricate process of myelinogenesis in a direct and non-invasive manner, paving the way for further advancements in the field of nanoscale neuroimaging.


Assuntos
Compostos de Boro , Curcumina , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios , Microscopia Eletrônica
2.
BMC Bioinformatics ; 25(1): 114, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491365

RESUMO

BACKGROUND: Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome's structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities. RESULTS: Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine. CONCLUSIONS: NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org .


Assuntos
Conectoma , Software , Animais , Neurônios , Microscopia Eletrônica , Drosophila
3.
Methods Mol Biol ; 2754: 77-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512661

RESUMO

The electron microscopy metainference integrative structural biology method enables the combination of cryo-electron microscopy electron density maps with molecular modeling techniques such as molecular dynamics to unveil the atomistic biomolecular structural ensemble and the error in the map data in an efficient manner. Here we illustrate the electron microscopy metainference protocol and analysis used to elucidate the atomistic structural ensemble of the microtubule-associated protein tau bound to microtubules by using state-of-the-art molecular mechanic force field and the electron density map.


Assuntos
Microtúbulos , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica
4.
Methods Mol Biol ; 2754: 105-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512663

RESUMO

Tau aggregates are considered a pathological hallmark of Alzheimer's disease. The screening of molecules against Tau aggregation is a novel strategy for Alzheimer's disease. The photo-excited molecules have proven to be effective as a therapeutic agent in several diseases. In recent studies, the photo-excited dyes showed an inhibitory effect on Alzheimer's disease-related Tau protein aggregation and toxicity. The present chapter deals with the effect of rose bengal on the aggregation of Tau. The in vitro studies carried out with the help of electron microscopy, ThS fluorescence, and circular dichroism suggested that RB attenuated the Tau aggregation under in vitro conditions, whereas PE-RB disaggregated the mature Tau fibrils. Photo-excited rose bengal and the classical rose bengal induced a low degree of toxicity in cells. Thus, for the treatment of Alzheimer's disease, the rose bengal could be considered a potential molecule.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Agregados Proteicos , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Corantes , Proteínas tau/metabolismo , Microscopia Eletrônica , Agregação Patológica de Proteínas/metabolismo
5.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38514185

RESUMO

The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.


Assuntos
Elétrons , Núcleos Intralaminares do Tálamo , Neurônios/fisiologia , Globo Pálido , Microscopia Eletrônica
6.
Nat Commun ; 15(1): 2445, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503728

RESUMO

Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.


Assuntos
Arabidopsis , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Imagem Individual de Molécula/métodos , Elétrons
7.
Braz J Biol ; 83: e278994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422275

RESUMO

The Loranthaceae Juss. family includes parasitic species that invade important trees such as fruit trees. In Saudi Arabia, Loranthaceae comprises four genera, which include six species that grow in the western, southwestern, and northern regions: Tapinanthus globifer (A.Rich.) Tiegh, Oncocalyx glabratus (Engl.) M. G. Gilbert, Loranthella deflersii (Tiegh.) S. Blanco & C. E. Wetze, Phragmanthera austroarabica A. G. Mill. & J. Nyberg, Plicosepalus curviflorus (Benth.ex Oliv.) Tiegh. and Plicosepalus acaciae (Zucc.). The species present in the Kingdom of Saudi Arabia have not been the subject of enough studies. This work aims to screen and evaluate the taxonomic importance of the micromorphological traits of leaves and fruits in Loranthaceae species native to Saudi Arabia (SA) using scanning electron microscope (SEM). In this study, cluster dendrogram (CD), principal component analysis (PCA) and analysis of variance (ANOVA) were used to evaluate the ability to discriminate Loranthaceae species using micromorphological characteristics. Most of the micromorphological characteristics of the leaf and fruit surfaces used reflected significant variation between the species of Loranthaceae. The type of stomata, trichome, lenticels, fine relief of the cell wall and wax form were the most taxonomically important characteristics. In addition, the cluster dendrogram of morphological characteristics showed species distribution within branches based on affiliation to subtribes Tapinanthinae and Emelianthinae. To the best of our knowledge, the fruit and leaves of the species under study have never been described using electron microscopy, and this study is considered the first of its kind. It also contributes to solving the classification problems of the family Loranthaceae in general and confirms the importance of the characteristics and methods used as tools for characterizing parasitic species that infect trees and helps to verify their identities. This will help to improve resistance efforts and put effective control plans in place.


Assuntos
Loranthaceae , Elétrons , Folhas de Planta/anatomia & histologia , Microscopia Eletrônica , Frutas
8.
Cell ; 187(3): 563-584, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306982

RESUMO

Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.


Assuntos
Biologia , Microscopia Eletrônica , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia de Fluorescência , Tempo , Simulação por Computador
9.
Cell ; 187(3): 511-512, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306976

RESUMO

Continuing the celebration of Cell's 50th anniversary, this Focus Issue is an ode to the field of Structural Biology. We present Leading Edge articles highlighting specific approaches and insights that this field offers to answer fundamental and critical biological questions.


Assuntos
Biologia Celular , Biologia Molecular , Publicações Periódicas como Assunto , Microscopia Eletrônica
10.
J Chem Neuroanat ; 136: 102396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331230

RESUMO

The transmission of signals to the cell body from injured axons induces significant alterations in primary sensory neurons located in the ganglion tissue, the site of the perikaryon of the affected nerve fibers. Disruption of the continuity between the proximal and distal ends leads to substantial adaptability in ganglion cells and induces macrophage-like activity in the satellite cells. Research findings have demonstrated the plasticity of satellite cells following injury. Satellite cells work together with sensory neurons to extend the interconnected surface area in order to permit effective communication. The dynamic cellular environment within the ganglion undergoes several alterations that ultimately lead to differentiation, transformation, or cell death. In addition to necrotic and apoptotic cell morphology, phenomena such as histomorphometric alterations, including the development of autophagic vacuoles, chromatolysis, cytosolic degeneration, and other changes, are frequently observed in cells following injury. The use of electron microscopic and stereological techniques for assessing ganglia and nerve fibers is considered a gold standard in terms of investigating neuropathic pain models, regenerative therapies, some treatment methods, and quantifying the outcomes of pharmacological and bioengineering interventions. Stereological techniques provide observer-independent and reliable results, which are particularly useful in the quantitative assessment of three-dimensional structures from two-dimensional images. Employing the fractionator and disector techniques within stereological methodologies yields unbiased data when assessing parameters such as number. The fundamental concept underlying these methodologies involves ensuring that each part of the structure under evaluation has an equal opportunity of being sampled. This review describes the stereological and histomorphometric evaluation of dorsal root ganglion neurons and satellite cells following nerve injury models.


Assuntos
Neurônios , Traumatismos dos Nervos Periféricos , Ratos , Animais , Nervo Isquiático/lesões , Microscopia Eletrônica , Plasticidade Neuronal/fisiologia
11.
Malar J ; 23(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383417

RESUMO

BACKGROUND: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS: The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS: A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.


Assuntos
Malária , Parasitos , Animais , Humanos , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei , Microscopia Eletrônica
12.
J Comp Neurol ; 532(2): e25574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411251

RESUMO

Due to its proximity to the axon initial segment (AIS), the paranode of the first myelin segment can influence the threshold for action potentials and how a neuron participates in a neuronal circuit. Using serial section electron microscopy, we examined its three-dimensional (3D) organization in the ventral horn of the mouse spinal cord. The myelin loops of postnatal day 18 mice resemble those at the node of Ranvier. However, in 3-month-old mice, 13 of 22 para-AIS showed 4 types of alteration: (A) A cytoplasmic foot process, with ultrastructural characteristics of an astrocyte, was interposed between the axolemma and the myelin loops. (B) A thin extension of the inner tongue was present between the foot process and axolemma. (C) The foot process was absent. The inner tongue extension was a broad lamella from which a thin extension reached beyond the loops and spiraled around axon. (D) One set of loops was adjacent to the axon, and another was further back and underlain by compact myelin. We suggest that (A)-(C) are steps in a progression toward (D). In this progression, a glial process displaces the original loops, the inner tongue reactivates and extends beneath the foot process, then wraps around the axon to form a new set of loops. This is the first study of the 3D organization of myelin at the AIS and provides evidence for glia-mediated age-dependent remodeling at this critical region.


Assuntos
Segmento Inicial do Axônio , Bainha de Mielina , Camundongos , Animais , Bainha de Mielina/ultraestrutura , Axônios/ultraestrutura , Neurônios , Microscopia Eletrônica
13.
Methods Mol Biol ; 2772: 15-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411803

RESUMO

The endoplasmic reticulum (ER) forms an extensive network in plant cells. In leaf cells and vacuolated root cells it is mainly restricted to the cortex, whereas in the root meristem the cortical and cytoplasmic ER takes up a large volume throughout the entire cell. Only 3D electron microscopy provides sufficient resolution to understand the spatial organization of the ER in the root. Here we present two protocols for 3D EM imaging of the ER across a range of scales. For large-scale ER structure analysis, we describe selective ER staining with ZIO that allows for automated or semi-automated ER segmentation. For smaller regions of ER, we describe high-pressure freezing, which enables almost instantaneous fixation of plant tissues but without organelle specific staining. These fixation and staining techniques are suitable for a range of imaging modalities, including serial sections, array tomography, serial block face-scanning electron microscopy (SBF-SEM), or focused ion beam (FIB) SEM.


Assuntos
Elétrons , Retículo Endoplasmático , Microscopia Eletrônica , Citosol , Técnicas Histológicas
14.
Cells ; 13(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391969

RESUMO

Acanthocephalans are dioecious parasites that gain sexual maturity in the alimentary canal of their definitive hosts (gnathostome vertebrates). This initial survey by light and transmission electron microscopy was conducted on the functional organization of the ovarian balls and uterine bell in mature females and on Saefftigen's pouch and the copulatory bursa in males. We studied these structures via the example of Centrorhynchus globocaudatus (Palaeacanthocephala) in Falco tinnunculus and Buteo buteo, from the Province of Ferrara (Northern Italy). Our study confirms that the ovarian balls have surface microvilli and consist of a multinucleate supporting syncytium and a cellular region with oogonial syncytium, single germ cells, zygotes, and shelled eggs. Germ cells are embedded in the supporting syncytium. The ultrastructural features of these components and data on fertilization, shell formation, and release from the ovarian ball, alongside insights into the likely egg sorting function of the uterine bell, are provided. We also present light and electron microscopy observations of Saefftigen's pouch and a suggestion regarding its hydrostatic functioning in the eversion of the copulatory bursa.


Assuntos
Acantocéfalos , Parasitos , Aves Predatórias , Animais , Feminino , Masculino , Acantocéfalos/ultraestrutura , Microscopia Eletrônica , Zigoto , Aves Predatórias/parasitologia
15.
Curr Opin Struct Biol ; 85: 102788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401399

RESUMO

Many protein and nucleoprotein complexes exist as helical polymers. As a result, much effort has been invested in developing methods for using electron microscopy to determine the structure of these assemblies. With the revolution in cryo-electron microscopy (cryo-EM), it has now become routine to reach a near-atomic level of resolution for these structures, and it is the exception when this is not possible. However, the greatest challenge is frequently determining the correct symmetry. This review focuses on why this can be so difficult and the current absence of a better approach than trial-and-error.


Assuntos
Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica
16.
Sci Rep ; 14(1): 5011, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424114

RESUMO

Recently, electron cryo-microscopy (cryo-EM) maps of fibrils from the brains of mice and hamsters with five infectious scrapie strains have been published and deposited in the electron microscopy data bank (EMDB). As noted by the primary authors, the fibrils contain a second component other than protein. The aim of the present study was to identify the nature of this second component in the published maps using an in silico approach. Extra densities (EDs) containing this component were continuous, straight, axial, at right angles to protein rungs and within hydrogen-bonding distance of protein, consistent with a structural role. EDs co-located with strips of basic residues, notably lysines, and formed a conspicuous cladding over parts of the N-terminal lobe of the protein. A Y-shaped polymer consistent with RNA was found, in places forming a single chain and at one location forming a duplex, comprising two antiparallel chains, and raising the intriguing possibility of replicative behaviour. To reflect the monotonous nature of the protein interface, it is suggested that the RNA may be a short tandem repeat. Fibrils from brains of patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other neurodegenerations also contain EDs and may be of a similar aetiology.


Assuntos
Doença de Alzheimer , Scrapie , Cricetinae , Animais , Ovinos , Humanos , RNA , Citoesqueleto , Microscopia Eletrônica , Microscopia Crioeletrônica , Amiloide/química
17.
EBioMedicine ; 100: 104982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306899

RESUMO

BACKGROUND: Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS: We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS: We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION: We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING: This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Substância Branca , Suínos , Humanos , Animais , Camundongos , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Cuprizona , Porco Miniatura , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Substância Branca/patologia , Microscopia Eletrônica , Modelos Animais de Doenças
18.
Semin Cell Dev Biol ; 159-160: 38-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310707

RESUMO

Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Células HeLa , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Microscopia Eletrônica
19.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
20.
J Histochem Cytochem ; 72(3): 149-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400717

RESUMO

Correlative microscopy is a sophisticated imaging technique that combines optical and electron microscopes, with the most common approach being the integration of light microscopy and electron microscopy, known as correlative light and electron microscopy (CLEM). While CLEM provides a comprehensive view of biological samples, it presents a significant challenge in sample preparation due to the distinct processes involved in each technique. Striking a balance between these methods is crucial. Despite numerous approaches, achieving seamless imaging with CLEM remains a complex task. Exosomes, nanovesicles ranging from 30 to 150 nm in size, are enclosed by a lipid bilayer and released by various cell types. Visualizing exosomes poses difficulties due to their small size and minimal electric charge. However, imaging exosomes at high resolution offers a direct method to understand their morphology and functions. In this study, we evaluated exosome imaging with CLEM using a combination of confocal, transmission electron microscope, and scanning electron microscope (SEM). In addition, we conducted a comparative analysis of these two techniques, evaluating their suitability and efficiency in imaging nanoscale structures. In this study, we found that confocal-SEM correlation is more applicable for imaging exosomes. Moreover, we observed that exosomes were found in clusters in confocal-SEM correlation.


Assuntos
Exossomos , Microscopia de Fluorescência/métodos , Microscopia Eletrônica , Microscopia Confocal , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...