Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.835
Filtrar
1.
J Am Chem Soc ; 146(12): 8016-8030, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470819

RESUMO

There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Quimioinformática , Peptídeos/química , Biossíntese Peptídica , Aminoácidos
2.
J Am Chem Soc ; 146(6): 4270-4280, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38316681

RESUMO

Peptide therapeutics have experienced a rapid resurgence over the past three decades. While a few peptide drugs are biologically produced, most are manufactured via chemical synthesis. The cycle of prior protection of the amino group of an α-amino acid, activation of its carboxyl group, aminolysis with the free amino group of a growing peptide chain, and deprotection of the N-terminus constitutes the principle of conventional C → N peptide chemical synthesis. The mandatory use of the Nα-protecting group invokes two additional operations for incorporating each amino acid, resulting in poor step- and atom-economy. The burgeoning demand in the peptide therapeutic market necessitates cost-effective and environmentally friendly peptide manufacturing strategies. Inverse peptide chemical synthesis using unprotected amino acids has been proposed as an ideal and appealing strategy. However, it has remained unsuccessful for over 60 years due to severe racemization/epimerization during N → C peptide chain elongation. Herein, this challenge has been successfully addressed by ynamide coupling reagent employing a transient protection strategy. The activation, transient protection, aminolysis, and in situ deprotection were performed in one pot, thus offering a practical peptide chemical synthesis strategy formally using unprotected amino acids as the starting material. Its robustness was exemplified by syntheses of peptide active pharmaceutical ingredients. It is also amenable to fragment condensation and inverse solid-phase peptide synthesis. The compatibility to green solvents further enhances its application potential in large-scale peptide production. This study offered a cost-effective, operational convenient, and environmentally benign approach to peptides.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Peptídeos/química , Técnicas de Química Sintética , Peptídeo C , Biossíntese Peptídica , Técnicas de Síntese em Fase Sólida
3.
Orig Life Evol Biosph ; 53(3-4): 157-173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897620

RESUMO

The dynamic behaviors of prebiotic reaction networks may be critically important to understanding how larger biopolymers could emerge, despite being unfavorable to form in water. We focus on understanding the dynamics of simple systems, prior to the emergence of replication mechanisms, and what role they may have played in biopolymer formation. We specifically consider the dynamics in cyclic environments using both model and experimental data. Cyclic environmental conditions prevent a system from reaching thermodynamic equilibrium, improving the chance of observing interesting kinetic behaviors. We used an approximate kinetic model to simulate the dynamics of trimetaphosphate (TP)-activated peptide formation from glycine in cyclic wet-dry conditions. The model predicts that environmental cycling allows trimer and tetramer peptides to sustain concentrations above the predicted fixed points of the model due to overshoot, a dynamic phenomenon. Our experiments demonstrate that oscillatory environments can shift product distributions in favor of longer peptides. However, experimental validation of certain behaviors in the kinetic model is challenging, considering that open systems with cyclic environmental conditions break many of the common assumptions in classical chemical kinetics. Overall, our results suggest that the dynamics of simple peptide reaction networks in cyclic environments may have been important for the formation of longer polymers on the early Earth. Similar phenomena may have also contributed to the emergence of reaction networks with product distributions determined not by thermodynamics, but rather by kinetics.


Assuntos
Biossíntese Peptídica , Peptídeos , Termodinâmica , Polímeros
4.
Proc Natl Acad Sci U S A ; 120(37): e2308685120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669374

RESUMO

Here, we provide mechanistic support for the involvement of the CYP9A subfamily of cytochrome P450 monooxygenases in the detoxification of host plant defense compounds and chemical insecticides in Spodoptera exigua and Spodoptera frugiperda. Our comparative genomics shows that a large cluster of CYP9A genes occurs in the two species but with significant differences in its contents, including several species-specific duplicates and substantial sequence divergence, both between orthologs and between duplicates. Bioassays of CRISPR-Cas9 knockouts of the clusters show that, collectively, the CYP9As can detoxify two furanocoumarin plant defense compounds (imperatorin and xanthotoxin) and insecticides representing three different chemotypes (pyrethroids, avermectins, and oxadiazines). However, in vitro metabolic assays of heterologously expressed products of individual genes show several differences between the species in the particular CYP9As with activities against these compounds. We also find that the clusters show tight genetic linkage with high levels of pyrethroid resistance in field strains of the two species. We propose that their divergent amplifications of the CYP9A subfamily have not only contributed to the development of the broad host ranges of these species over long evolutionary timeframes but also supplied them with diverse genetic options for evolving resistance to chemical insecticides in the very recent past.


Assuntos
Inseticidas , Xenobióticos , Biossíntese Peptídica , Metabolismo Secundário , Sistema Enzimático do Citocromo P-450
5.
Nat Commun ; 14(1): 5324, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658053

RESUMO

In conventional solid-phase peptide synthesis (SPPS), α-amino groups are protected with alkoxycarbonyl groups (e.g., 9-fluorenylmethoxycarbonyl [Fmoc]). However, during SPPS, inherent side reactions of the protected amino acids (e.g., α-C racemization and aspartimide formation) generate by-products that are hard to remove. Herein, we report a thiol-labile amino protecting group for SPPS, the 2,4-dinitro-6-phenyl-benzene sulfenyl (DNPBS) group, which is attached to the α-amino group via a S-N bond and can be quantitatively removed in minutes under nearly neutral conditions (1 M p-toluenethiol/pyridine). The use of DNPBS greatly suppresses the main side reactions observed during conventional SPPS. Although DNPBS SPPS is not as efficient as Fmoc SPPS, especially for synthesis of long peptides, DNPBS and Fmoc are orthogonal protecting groups; and thus DNPBS SPPS and Fmoc SPPS can be combined to synthesize peptides that are otherwise difficult to obtain.


Assuntos
Aminoácidos , Biossíntese Peptídica , Benzeno , Carbono , Compostos de Sulfidrila
6.
Nat Commun ; 14(1): 4042, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422531

RESUMO

Digoxin extracted from the foxglove plant is a widely prescribed natural product for treating heart failure. It is listed as an essential medicine by the World Health Organization. However, how the foxglove plant synthesizes digoxin is mostly unknown, especially the cytochrome P450 sterol side chain cleaving enzyme (P450scc), which catalyzes the first and rate-limiting step. Here we identify the long-speculated foxglove P450scc through differential transcriptomic analysis. This enzyme converts cholesterol and campesterol to pregnenolone, suggesting that digoxin biosynthesis starts from both sterols, unlike previously reported. Phylogenetic analysis indicates that this enzyme arises from a duplicated cytochrome P450 CYP87A gene and is distinct from the well-characterized mammalian P450scc. Protein structural analysis reveals two amino acids in the active site critical for the foxglove P450scc's sterol cleavage ability. Identifying the foxglove P450scc is a crucial step toward completely elucidating digoxin biosynthesis and expanding the therapeutic applications of digoxin analogs in future work.


Assuntos
Digoxina , Esteróis , Animais , Filogenia , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Biossíntese Peptídica , Mamíferos/metabolismo
7.
Methods Mol Biol ; 2670: 187-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37184705

RESUMO

Glycopeptide antibiotics (GPAs) are important and medically relevant peptide natural products. In the context of antimicrobial resistance (AMR), understanding and manipulating GPA biosynthesis is essential to discover new bioactive derivatives of these peptides. Among all the enzymatic steps in GPA biosynthesis, the most complex occurs during the maturation (cross-linking) of the peptide aglycone. This is achieved-while the peptide remains attached to the nonribosomal peptide synthetase (NRPS) machinery-through the action of a cytochrome P450 (CYP450 or Oxy)-mediated cyclization cascade. There is great interest in understanding the formation of the cross-links between the aromatic side chains in GPAs as this process leads to the cup-shaped aglycone, which is itself a requirement for antibiotic activity. In this regard, the use of in vitro experiments is crucial to study this process. To address the process of peptide cyclization during GPA biosynthesis, a series of peptide substrates and different Oxy enzymes are required. In this chapter, we describe a practical and efficient route for the synthesis of peptidyl-CoAs, the expression of proteins/enzymes involved in the in vitro cyclization assay, the loading of the PCP with peptidyl-CoAs, an optimized CYP450-mediated cyclization cascade and assay workup followed by mass spectrometry (MS) characterization. This in vitro assay affords high conversion to cyclic peptides and demonstrates the tolerance of the P450s for novel GPA precursor peptide substrates.


Assuntos
Antibacterianos , Glicopeptídeos , Glicopeptídeos/química , Antibacterianos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeos/metabolismo , Biossíntese Peptídica , Peptídeo Sintases/química
8.
Angew Chem Int Ed Engl ; 62(21): e202302360, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881520

RESUMO

RNA is a molecule that can both store genetic information and perform catalytic reactions. This observed dualism places RNA into the limelight of concepts about the origin of life. The RNA world concept argues that life started from self-replicating RNA molecules, which evolved toward increasingly complex structures. Recently, we demonstrated that RNA, with the help of conserved non-canonical nucleosides, which are also putative relics of an early RNA world, had the ability to grow peptides covalently connected to RNA nucleobases, creating RNA-peptide chimeras. It is conceivable that such molecules, which combined the information-coding properties of RNA with the catalytic potential of amino acid side chains, were once the structures from which life emerged. Herein, we report prebiotic chemistry that enabled the loading of both nucleosides and RNAs with amino acids as the first step toward RNA-based peptide synthesis in a putative RNA-peptide world.


Assuntos
Aminoácidos , RNA , RNA/química , Aminoácidos/metabolismo , Peptídeos/metabolismo , Nucleosídeos/química , Biossíntese Peptídica , Origem da Vida
9.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838826

RESUMO

The reduction and replacement of in vivo tests have become crucial in terms of resources and animal benefits. The read-across approach reduces the number of substances to be tested, exploiting existing experimental data to predict the properties of untested substances. Currently, several tools have been developed to perform read-across, but other approaches, such as computational workflows, can offer a more flexible and less prescriptive approach. In this paper, we are introducing a workflow to support analogue identification for read-across. The implementation of the workflow was performed using a database of azole chemicals with in vitro toxicity data for human aromatase enzymes. The workflow identified analogues based on three similarities: structural similarity (StrS), metabolic similarity (MtS), and mechanistic similarity (McS). Our results showed how multiple similarity metrics can be combined within a read-across assessment. The use of the similarity based on metabolism and toxicological mechanism improved the predictions in particular for sensitivity. Beyond the results predicting a large population of substances, practical examples illustrate the advantages of the proposed approach.


Assuntos
Aromatase , Substâncias Perigosas , Animais , Humanos , Fluxo de Trabalho , Metabolismo Secundário , Biossíntese Peptídica , Medição de Risco/métodos
11.
Angew Chem Int Ed Engl ; 61(37): e202204957, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851739

RESUMO

We report our investigation of the utility of peptide crosslinking cytochrome P450 enzymes from biarylitide biosynthesis to generate a range of cyclic tripeptides from simple synthons. The crosslinked tripeptides produced by this P450 include both tyrosine-histidine (A-N-B) and tyrosine-tryptophan (A-O-B) crosslinked tripeptides, the latter a rare example of a phenolic crosslink to an indole moiety. Tripeptides are easily isolated following proteolytic removal of the leader peptide and can incorporate a wide range of amino acids in the residue inside the crosslinked tripeptide. Given the utility of peptide crosslinks in important natural products and the synthetic challenge that these can represent, P450 enzymes have the potential to play roles as important tools in the generation of high-value cyclic tripeptides for incorporation in synthesis, which can be yet further diversified using selective chemical techniques through specific handles contained within these tripeptides.


Assuntos
Histidina , Tirosina , Sistema Enzimático do Citocromo P-450/metabolismo , Histidina/metabolismo , Biossíntese Peptídica , Peptídeos/química , Tirosina/metabolismo
12.
Chemistry ; 28(35): e202103989, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35502817

RESUMO

Since the global peptide drug market demand has been predicted to increase, highly efficient and inexpensive mass scale peptides are required. However, the production process raises questions about the cost of energy input, scale-up production, raw materials, and solvents treatment. This paper introduces 2 methods for the 2-4 mer oligopeptides bond formation for batch reaction utilizing 50-100 mol% of a mild Brønsted acid under the mild condition. One of the methods has been capably adapted to flow synthesis at room temperature using organic solvents with boiling points below 100 °C. The method applies the tert-butoxycarbonyl amino methoxy group, forming the desired dipeptide without solvent at mild temperatures. Furthermore, the conversion of the carboxylic acid leaving the group to phenyl ester promotes peptide bond formation, and the reaction were applied to di, tri, and tetrapeptide bond formation in excellent yield without notable racemization at ambient temperature (up to >99 % yield and 99 : 1 dr). Finally, this study proposes this new production method to overcome the limited scale-up production by reaction device scale: liquid phase biomimetic catalytic peptide flow synthesis utilizing a mild Brønsted acid.


Assuntos
Biomimética , Peptídeos , Ácidos , Catálise , Biossíntese Peptídica , Peptídeos/química , Solventes/química
13.
J Biol Chem ; 298(6): 102039, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35595100

RESUMO

Ribosome speed is dictated by multiple factors including substrate availability, cellular conditions, and product (peptide) formation. Translation slows during the synthesis of cationic peptide sequences, potentially influencing the expression of thousands of proteins. Available evidence suggests that ionic interactions between positively charged nascent peptides and the negatively charged ribosome exit tunnel impede translation. However, this hypothesis was difficult to test directly because of inability to decouple the contributions of amino acid charge from mRNA sequence and tRNA identity/abundance in cells. Furthermore, it is unclear if other components of the translation system central to ribosome function (e.g., RNA modification) influence the speed and accuracy of positively charged peptide synthesis. In this study, we used a fully reconstituted Escherichia coli translation system to evaluate the effects of peptide charge, mRNA sequence, and RNA modification status on the translation of lysine-rich peptides. Comparison of translation reactions on poly(lysine)-encoding mRNAs conducted with either Lys-tRNALys or Val-tRNALys reveals that that amino acid charge, while important, only partially accounts for slowed translation on these transcripts. We further find that in addition to peptide charge, mRNA sequence and both tRNA and mRNA modification status influence the rates of amino acid addition and the ribosome's ability to maintain frame (instead of entering the -2, -1, and +1 frames) during poly(lysine) peptide synthesis. Our observations lead us to expand the model for explaining how the ribosome slows during poly(lysine) peptide synthesis and suggest that posttranscriptional RNA modifications can provide cells a mechanism to precisely control ribosome movements along an mRNA.


Assuntos
Biossíntese Peptídica , Polilisina , RNA Mensageiro , RNA de Transferência , Ribossomos , Peptídeos/metabolismo , Polilisina/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Lisina/metabolismo , Ribossomos/metabolismo
14.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163932

RESUMO

Reducing the salt content in food is an important nutritional strategy for decreasing the risk of diet-related diseases. This strategy is particularly effective when applied to highly appreciated food having good nutritional characteristics, if it does not impact either upon sensory or nutritional properties of the final product. This work aimed at evaluating if the reduction of salt content by decreasing the brine soaking time modifies fatty acid and protein bioaccessibility and bioactive peptide formation in a 30-month-ripened Parmigiano Reggiano cheese (PRC). Hence, conventional and hyposodic PRC underwent in vitro static gastrointestinal digestion, and fatty acid and protein bioaccessibility were assessed. The release of peptide sequences during digestion was followed by LC-HRMS, and bioactive peptides were identified using a bioinformatic approach. At the end of digestion, fatty acid and protein bioaccessibility were similar in conventional and hyposodic PRC, but most of the bioactive peptides, mainly the ACE-inhibitors, were present in higher concentrations in the low-salt cheese. Considering that the sensory profiles were already evaluated as remarkably similar in conventional and hyposodic PRC, our results confirmed that shortening brine soaking time represents a promising strategy to reduce salt content in PRC.


Assuntos
Queijo/análise , Manipulação de Alimentos/métodos , Nutrientes/análise , Biossíntese Peptídica , Sais/metabolismo , Água/química , Humanos , Cloreto de Sódio , Solubilidade
15.
J Am Chem Soc ; 144(8): 3637-3643, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188383

RESUMO

Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acids─the standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agents─it depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.


Assuntos
Aminoácidos , Peptídeos , Amidas , Aminas , Aminoácidos/química , Oxirredução , Biossíntese Peptídica , Peptídeos/química
16.
Proteins ; 90(3): 670-679, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664307

RESUMO

Microviridins, tricyclic peptide natural products originally isolated from cyanobacteria, function as inhibitors of diverse serine-type proteases. Here we report the structure and biochemical characterization of AMdnB, a unique iterative macrocyclase involved in a microviridin biosynthetic pathway from Anabaena sp. PCC 7120. The ATP-dependent cyclase, along with the homologous AMdnC, introduce up to nine macrocyclizations on three distinct core regions of a precursor peptide, AMdnA. The results presented here provide structural and mechanistic insight into the iterative chemistry of AMdnB. In vitro AMdnB-catalyzed cyclization reactions demonstrate the synthesis of the two predicted tricyclic products from a multi-core precursor peptide substrate, consistent with a distributive mode of catalysis. The X-ray structure of AMdnB shows a structural motif common to ATP-grasp cyclases involved in RiPPs biosynthesis. Additionally, comparison with the noniterative MdnB allows insight into the structural basis for the iterative chemistry. Overall, the presented results provide insight into the general mechanism of iterative enzymes in ribosomally synthesized and post-translationally modified peptide biosynthetic pathways.


Assuntos
Produtos Biológicos/química , Cianobactérias/metabolismo , Peptídeos Cíclicos/química , Ribossomos/metabolismo , Sequência de Aminoácidos , Benchmarking , Vias Biossintéticas , Catálise , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Biossíntese Peptídica , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional
17.
Methods Mol Biol ; 2371: 159-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34596848

RESUMO

Macrocyclization can confer enhanced stability, target affinity, and membrane permeability to peptide scaffolds, all of which are desirable properties for chemical probes and therapeutics. A wide array of macrocyclization chemistries have been reported over the last few decades; however, these often have limited compatibility with each other and across chemical environments, thus restricting access to specific molecular properties. In an effort to address some of these limitations, we recently described the use of Diels-Alder [4 + 2] cycloadditions for peptide macrocyclization. Among the attributes of this chemistry, we demonstrated that Diels-Alder cyclization can template diverse peptide secondary structures, proceed in organic or aqueous environments, and endow improved pharmacologic properties on cyclized peptides. Here, we present synthetic processes and characterization methods for the synthesis of Diels-Alder cyclized peptides.


Assuntos
Reação de Cicloadição , Biossíntese Peptídica , Ciclização , Peptídeos Cíclicos
18.
J Ind Microbiol Biotechnol ; 49(1)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34543433

RESUMO

MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.


Assuntos
Sistema Enzimático do Citocromo P-450 , Macrolídeos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Oxirredução , Biossíntese Peptídica
19.
Org Biomol Chem ; 19(37): 8014-8017, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34596198

RESUMO

In this report, we introduce a novel building block for Fmoc/tBu solid phase peptide synthesis (SPPS) of ß-linked O-GlcNAcylated peptides. This building block carries acid labile silyl ether protecting groups, which are fully removed under TFA-mediated peptide cleavage conditions from the resin, thus requiring fewer synthetic steps and no intermediate purification as compared to other acid or base labile protecting group strategies.


Assuntos
Éter , Biossíntese Peptídica
20.
Chemistry ; 27(69): 17487-17494, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34651362

RESUMO

Aliphatic γ-chloro-α-amino acids incorporated in place of their canonical analogues through cell-free protein synthesis act as heat-labile linkers, offering a useful strategy for the straightforward production of target peptides as fusion proteins, from which the targets are readily released. Until now, the natural abundance of aliphatic amino acids in peptides has limited the scope of the method, as it leads to undesired cleavage sites in synthesized products, but here the authors report the development of a new cleavable chloro amino acid that incorporates in place of the relatively rare amino acid methionine, thus greatly expanding the scope of producible targets. This new strategy is employed for simplified peptide synthesis with a methionine-free fusion partner, allowing single-site incorporation of the cleavable linker for clean release and easy purification of the target peptide. Its utility is demonstrated through the straightforward preparation of two peptides reported to be challenging targets and not accessible through standard solid-phase chemical methodologies, as well as analogues.


Assuntos
Metionina , Peptídeos , Aminoácidos/metabolismo , Biossíntese Peptídica , Peptídeos/metabolismo , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...