Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.144
Filtrar
1.
PLoS One ; 19(4): e0300440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598505

RESUMO

The automatic detection of the degree of surface corrosion on metal structures is of significant importance for assessing structural damage and safety. To effectively identify the corrosion status on the surface of coastal metal facilities, this study proposed a CBG-YOLOv5s model for metal surface corrosion detection, based on the YOLOv5s model. Firstly, we integrated the Convolutional Block Attention Module (CBAM) into the C3 module and developed the C3CBAM module. This module effectively enhanced the channel and spatial attention capabilities of the feature map, thereby improving the feature representation. Second, we introduced a multi-scale feature fusion concept in the feature fusion part of the model and added a small target detection layer to improve small target detection. Finally, we designed a lighter C3Ghost module, which reduced the number of parameters and the computational load of the model, thereby improving the running speed of the model. In addition, to verify the effectiveness of our method, we constructed a dataset containing 6000 typical images of metal surface corrosion and conducted extensive experiments on this dataset. The results showed that compared to the YOLOv5s model and several other commonly used object detection models, our method achieved superior performance in terms of detection accuracy and speed.


Assuntos
Utensílios Domésticos , Reconhecimento Psicológico , Corrosão , Metais
2.
PLoS One ; 19(4): e0298266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573921

RESUMO

A mechanical device inspired by the pistol shrimp snapper claw was developed. This technology features a claw characterized by a periodic opening/closing motion, at a controlled frequency, capable of producing oscillating flows at transitional Reynolds numbers. An innovative method was also proposed for determining the corrosion rate of carbon steel samples under oscillating acidic streams (aqueous solution of HCl). By employing very-thin carbon steel specimens (25 µm thickness), with one side coated with Zn and not exposed to the stream, it became possible to electrochemically sense the Zn surface once the steel sample was perforated, thus providing the average dissolution rate into the most relevant pit on the steel surface. Furthermore, a laser light positioned beneath the metallic sample, along with a camera programmed to periodically capture images of the steel surface, facilitated the accurate counting of the number of newly formed pits. The system consisting of the thin steel sample and the Zn coating can be seen as a type of corrosion sensor. Furthermore, the proposed laser illumination method allows corroborating the electrochemical detection of pits and also establishing their location. The techniques crafted in this study pave the way for developing alternative corrosion sensors that boast appealing attributes: affordability, compactness, and acceptable accuracy to detect in time and space localized damage.


Assuntos
Carbono , Aço , Carbono/química , Aço/química , Corrosão , Rios , Ácidos/química
3.
Sci Rep ; 14(1): 6397, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493233

RESUMO

Modular hip implants allow intra-operative adjustments for patient-specific customization and targeted replacement of damaged elements without full implant extraction. However, challenges arise from relative micromotions between components, potentially leading to implant failure due to cytotoxic metal debris. In this study magnitude and directions of micromotions at the taper junction were estimated, aiming to understand the effect of variations in head size and neck length. Starting from a reference configuration adhering to the 12/14 taper standard, six additional implant configurations were generated by varying the head size and/or neck length. A musculoskeletal multibody model of a prothesized lower limb was developed to estimate hip contact force and location during a normal walking task. Following the implant assembly, the multibody-derived loads were imposed as boundary conditions in a finite element analysis to compute the taper junction micromotions as the relative slip between the contacting surfaces. Results highlighted the L-size head as the most critical configuration, indicating a 2.81 µm relative slip at the mid-stance phase. The proposed approach enables the investigation of geometric variations in implants under accurate load conditions, providing valuable insights for designing less risky prostheses and informing clinical decision-making processes.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Desenho de Prótese , Fenômenos Mecânicos , Metais , Corrosão
4.
Biotechnol J ; 19(3): e2300464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509814

RESUMO

The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.


Assuntos
Materiais Revestidos Biocompatíveis , Xilitol , Teste de Materiais , Materiais Revestidos Biocompatíveis/química , Corrosão , Porosidade , Ferro , Durapatita/química
5.
Langmuir ; 40(11): 5738-5752, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450610

RESUMO

The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE.


Assuntos
Cucurbita , Corrosão , Cobre/química , Aço/química , Extratos Vegetais/química
6.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471411

RESUMO

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Assuntos
Níquel , Pseudomonas aeruginosa , Corrosão , Carbono , Riboflavina/farmacologia , Biofilmes
7.
Appl Microbiol Biotechnol ; 108(1): 253, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441693

RESUMO

The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. KEY POINTS: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.


Assuntos
Óxido Ferroso-Férrico , Microbiota , Corrosão , Carbono , Aço
8.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494030

RESUMO

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Nanofios , Humanos , Aço , Elétrons , Carbono/metabolismo , Biofilmes , Desulfovibrio/metabolismo , Corrosão , Sulfatos/metabolismo , Redução de Peso
9.
Acta Biomater ; 178: 320-329, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479677

RESUMO

Stress-induced corrosion impairs the mechanical integrity of magnesium (Mg) and its alloys as potential orthopedic implants. Although there has been extensive work reporting the effects of stress on Mg corrosion in vitro, the geometric design principles of the Mg-based orthopedic devices still remain largely unknown. In this work, a numerical simulation model mimicking fractured bone fixation and surgical animal models were applied to investigate the effects of the geometric design of Mg screws on the stress distribution and the stress-induced degradation behavior. Finite element (FE) analysis was used for calculation of stress concentrations around the Mg screws, with different thread type, thread pitch, and thread width. Afterward, the Mg screws of the pre-optimization and post-optimization groups exhibiting the highest and lowest stress concentrations, respectively, were implanted in the fractured distal femora and back subcutaneous tissue of rabbits. Encouragingly, there was a significant difference between the pre-optimization and the post-optimization groups in the degradation rate of the stressed screw parts located around the fracture line. Interestingly, there was no significant difference between the two groups in the degradation rate of the non-stressed screw parts. Consistently, the Mg screw post-optimization exhibited a significantly lower degradation rate than that pre-optimization in the back subcutaneous implantation model, which generated stress in the whole screw body. The alteration in geometric design did not affect the corrosion rate of the Mg screws in an immersion test without load applied. Importantly, an accelerated new bone formation with less fibrous encapsulation around the screws was observed in the Mg group post-optimization relative to the Mg group pre-optimization and the poly (lactic acid) group. Geometry optimization may be a promising strategy to reduce stress-induced corrosion in Mg-based orthopedic devices. STATEMENT OF SIGNIFICANCE: Stress concentrations influence corrosion characteristics of magnesium (Mg)-based implants. The geometric design parameters, including thread type, thread pitch, and thread width of the Mg screws, were optimized through finite element analysis to reduce stress concentrations in a fractured model. The Mg screws with triangular thread type, 2.25 mm pitch, and 0.3 mm thread width, exhibiting the lowest maximum von Mises stress, showed a significant decrease in the volume loss relative to the Mg screws pre-optimization. Compared with the Mg screw pre-optimization and the poly(lactic acid) screw, the Mg screw post-optimization favored new bone formation while inhibiting fibrous encapsulation. Collectively, optimization in the geometric design is a promising approach to reduce stress-induced corrosion in Mg-based implants.


Assuntos
Fraturas do Fêmur , Consolidação da Fratura , Animais , Coelhos , Magnésio/farmacologia , Corrosão , Parafusos Ósseos , Fraturas do Fêmur/cirurgia , Análise de Elementos Finitos , Fenômenos Biomecânicos
10.
J Mater Sci Mater Med ; 35(1): 18, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526654

RESUMO

Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.


Assuntos
Durapatita , Nanopartículas Metálicas , Durapatita/química , Titânio/química , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Materiais Revestidos Biocompatíveis/química , Corrosão , Difração de Raios X , Ligas/química , Antibacterianos
11.
J Biomed Mater Res B Appl Biomater ; 112(4): e35404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533765

RESUMO

Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post-operative inflammation, could induce corrosion of standard Ti-based biomaterials. For Ti6Al4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti ß-phase materials, such as TiNb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of TiNb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post-immersion XPS and cross-section TEM analysis have demonstrated that prolonged exposure to an albumin-rich inflammatory solution results in the complete coverage of the TiNb surface by a protein layer. Moreover, TEM studies revealed that H2O2-induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti6Al4V, the addition of albumin to the PBS + H2O2 solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a TiNb implant.


Assuntos
Ligas , Peróxido de Hidrogênio , Humanos , Titânio , Albuminas , Corrosão , Inflamação , Teste de Materiais , Propriedades de Superfície
12.
Environ Sci Technol ; 58(12): 5606-5615, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470122

RESUMO

Gaps in the United States Environmental Protection Agency (US EPA) Lead and Copper Rule (LCR) leave some consumers and their pets vulnerable to high cuprosolvency in drinking water. This study seeks to help proactive utilities who wish to mitigate cuprosolvency problems through the addition of orthophosphate corrosion inhibitors. The minimum doses of orthophosphate necessary to achieve acceptable cuprosolvency in relatively new copper pipe were estimated as a function of alkalinity via linear regressions for the 90th, 95th, and 100th percentile copper tube segments (R2 > 0.98, n = 4). Orthophosphate was very effective at reducing cuprosolvency in the short term but, in some cases, resulted in higher long-term copper concentrations than the corresponding condition without orthophosphate. Alternatives to predicting "long-term" results for copper tubes using simpler bench tests starting with fresh Cu(OH)2 solids showed promise but would require further vetting to overcome limitations such as maintaining water chemistry and orthophosphate residuals and to ensure comparability to results using copper tube.


Assuntos
Água Potável , Poluentes Químicos da Água , Estados Unidos , Cobre/análise , Fosfatos , Abastecimento de Água , Corrosão
13.
Sci Total Environ ; 923: 171384, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432383

RESUMO

Some methanogens are electrotrophic bio-corroding microbes that can acquire electrons from solid surfaces including metals. In the laboratory, pure cultures of methanogenic cells oxidize iron-based materials including carbon steel, stainless steel, and Fe0. For buried or immersed pipelines or other metallic structures, methanogens are often major components of corroding biofilms with complex interspecies relationships. Models explaining how these microbes acquire electrons from solid donors are multifaceted and include electron transfer via redox mediators such as H2 or by direct contact through membrane proteins. Understanding the electron uptake (EU) routes employed by corroding methanogens is essential to develop efficient strategies for corrosion prevention. It is also beneficial for the development of bioenergy applications relying on methanogenic EU from solid donors such as bioelectromethanogenesis, hybrid photosynthesis, and the acceleration of anaerobic digestion with electroconductive particles. Many methanogenic species carrying out biocorrosion are the same ones forming the extensive abiotic-biological interfaces at the core of these bio-applications. This review will discuss the interactions between corrosive methanogens and metals and how the EU capability of these microbes can be harnessed for different sustainable biotechnologies.


Assuntos
Dióxido de Carbono , Elétrons , Dióxido de Carbono/química , Metais , Oxirredução , Transporte de Elétrons , Corrosão
14.
Int J Biol Macromol ; 264(Pt 2): 130769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467215

RESUMO

Two novel chitosan derivatives (water soluble and acid soluble) modified with thiocarbohydrazide were produced by a quick and easy technique using formaldehyde as links. The novel compounds were synthesized and then characterized by thermogravimetric analysis, elemental analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Their surface morphologies were examined using scanning electron microscopy. These chitosan derivatives could produce pH-dependent gels. The behavior of mild steel in 5 % acetic acid, including both inhibitors at various concentrations, was investigated using gravimetric and electrochemical experiments. According to the early findings, both compounds (TCFACN and TCFWCN) functioned as mixed-type metal corrosion inhibitors. Both inhibitors showed their best corrosion inhibition efficiency at 80 mg L-1. TCFACN and TCFWCN, showed approximately 92 % and 94 % corrosion inhibition, respectively, at an optimal concentration of 80 mg L-1, according to electrochemical analysis. In the corrosion test, the water contact angle of the polished MS sample at 87.90 °C was reduced to 51 °C. The water contact angles for MS inhibited by TCFACN and TCFWCN in the same electrolyte were greater, measuring 78.10 °C and 93.10 °C, respectively. The theoretical results also support the experimental findings.


Assuntos
Quitosana , Quitosana/química , Corrosão , Adsorção , Ácidos , Aço/química , Água
15.
Biofouling ; 40(2): 193-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38456659

RESUMO

Updated understanding on the effect of biofouling on corrosion rate is needed to protect marine structures as climate change is altering seawater physiochemistry and biofouling organism distribution. Multi-disciplinary techniques can improve understanding of biofouling development and associated corrosion rates on metals immersed in natural seawater (NSW). In this study, the development of biofouling and corrosion on welded Nickel Aluminium Bronze (NAB) was investigated through long-term immersion tests in NSW, simulated seawater (SSW) and air. Biofouling was affected by geographic location within the marina and influenced corrosion extent. The corrosion rate of NAB was accelerated in the initial months of exposure in NSW (1.27 mm.yr-1) and then settled to 0.11 mm.yr-1 (annual average). This was significantly higher than the 0.06 mm.yr-1 corrosion rate measured in SSW, which matched published rates. The results suggest that corrosion rates for cast NAB should be revised to take account of biofouling and updated seawater physiochemistry.


Assuntos
Incrustação Biológica , Biofilmes , Alumínio/química , Níquel , Corrosão , Água do Mar/química
16.
Int J Biol Macromol ; 264(Pt 1): 130524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442832

RESUMO

Silk fibroin coatings on biomedical magnesium alloys have garnered significant attention due to their enhanced corrosion resistance and biocompatibility. However, the utilization of wild A. pernyi silk fibroin, known for its RGD sequence that facilitates tissue regeneration, presents a challenge for corrosion-resistant coatings on magnesium alloys due to its weak adhesion and high dissolution rate. In this study, we employed hexafluoroisopropanol as a solvent to blend A. pernyi silk fibroin with B. mori silk fibroin. The resulting blended fibroin coating at a 3:7 mass ratio exhibited a heterogeneous nucleation effect, enhancing ß-sheet content (32.3 %) and crystallinity (28.6 %). This improved ß-sheet promoted the "labyrinth effect" with an Icorr of 2.15 × 10-6 A cm-2, resulting in significantly improved corrosion resistance, which is two orders of magnitude lower than that of pure magnesium alloy. Meanwhile, the increased content of exposed serine in zigzag ß-sheet contributes to a higher adhesion strength. Cell cytotoxicity evaluation confirmed the enhanced cell adhesion and bioactivity. This work provides a facile approach for wild A. pernyi silk fibroin coatings on magnesium alloys with enhanced corrosion resistance, adhesion and biocompatibility.


Assuntos
Fibroínas , Oligoelementos , Fibroínas/farmacologia , Magnésio/farmacologia , Corrosão , Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 380-386, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38500435

RESUMO

Objective: To review the research progress of magnesium and magnesium alloy implants in the repair and reconstruction of sports injury. Methods: Relevant literature of magnesium and magnesium alloys for sports injury repair and reconstruction was extensively reviewed. The characteristics of magnesium and its alloys and their applications in the repair and reconstruction of sports injuries across various anatomical sites were thoroughly discussed and summarized. Results: Magnesium and magnesium alloys have advantages in mechanical properties, biosafety, and promoting tendon-bone interface healing. Many preclinical studies on magnesium and magnesium alloy implants for repairing and reconstructing sports injuries have yielded promising results. However, successful clinical translation still requires addressing issues related to mechanical strength and degradation behavior, where alloying and surface treatments offer feasible solutions. Conclusion: The clinical translation of magnesium and magnesium alloy implants for repairing and reconstructing sports injuries holds promise. Subsequent efforts should focus on optimizing the mechanical strength and degradation behavior of magnesium and magnesium alloy implants. Conducting larger-scale biocompatibility testing and developing novel magnesium-containing implants represent new directions for future research.


Assuntos
Traumatismos em Atletas , Medicina Esportiva , Humanos , Magnésio , Ligas , Próteses e Implantes , Teste de Materiais , Implantes Absorvíveis , Corrosão
18.
J Hazard Mater ; 466: 133597, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310836

RESUMO

The global pollution crisis arising from the accumulation of plastic in landfills and the environment necessitates addressing plastic waste issues. Notably, polypropylene (PP) waste accounts for 20% of total plastic waste and holds promise for hydrophobic applications in the realm of recycling. Herein, the transparent and non-transparent superhydrophobic films made from waste PP are reported. A hierarchical structure with protrusions is induced through spin-casting and thermally induced phase separation. The films had a water contact angle of 159° and could vary in thickness, strength, roughness, and hydrophobicity depending on end-user requirements. The Bode plot indicated enhanced corrosion resistance in the superhydrophobic films. Antibacterial trials with Escherichia coli and Staphylococcus aureus microbial solutions showed that the superhydrophobic film had a significantly lower rate of colony-forming units compared to both the transparent surface and the control blank sample. Moreover, a life cycle assessment revealed that the film production resulted in a 62% lower embodied energy and 34% lower carbon footprint compared to virgin PP pellets sourced from petroleum. These films exhibit distinctiveness with their dual functionality as coatings and freestanding films. Unlike conventional coatings that require chemical application onto the substrate, these films can be mechanically applied using adhesive tapes on a variety of surfaces. Overall, the effective recycling of waste PP into versatile superhydrophobic films not only reduces environmental impact but also paves the way for a more sustainable and eco-friendly future.


Assuntos
Polipropilenos , Staphylococcus aureus , Corrosão , Interações Hidrofóbicas e Hidrofílicas , Tempo (Meteorologia)
19.
Colloids Surf B Biointerfaces ; 236: 113808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422669

RESUMO

In the cardiovascular field, coating containing copper used to catalyze NO (nitric oxide) production on non-degradable metal surfaces have shown unparalleled expected performance, but there are few studies on biodegradable metal surfaces. Magnesium-based biodegradable metals have been applied in cardiovascular field in large-scale because of their excellent properties. In this study, the coating of copper loaded in silk fibroin is fabricated on biodegradable ZE21B alloy. Importantly, the different content of copper is set to investigate the effects of on the degradation performance and cell behavior of magnesium alloy. Through electrochemical and immersion experiments, it is found that high content of copper will accelerate the corrosion of magnesium alloy. The reason is the spontaneous micro-batteries between copper and magnesium with the different standard electrode potentials, that is, the galvanic corrosion accelerates the corrosion of magnesium alloy. Moreover, the coating formed through silk fibroin by the right amount copper not only have a protective effect on the ZE21B alloy substrate, but also promotes the adhesion and proliferation of endothelial cells in blood vessel micro-environment. The production of NO catalyzed by copper ions makes this trend more significant, and inhibits the excessive proliferation of smooth muscle cells. These findings can provide guidance for the amount of copper in the coating on the surface of biodegradable magnesium alloy used for cardiovascular stent purpose.


Assuntos
Fibroínas , Fibroínas/farmacologia , Fibroínas/química , Cobre/farmacologia , Ligas/farmacologia , Ligas/química , Magnésio/farmacologia , Magnésio/química , Células Endoteliais , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Corrosão
20.
World J Microbiol Biotechnol ; 40(3): 98, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353843

RESUMO

Microbiologically-influenced corrosion (MIC) is a common operational hazard to many industrial processes. The focus of this review lies on microbial corrosion in the maritime industry. Microbial metal attachment and colonization are the critical steps in MIC initiation. We have outlined the crucial factors influencing corrosion caused by microorganism sulfate-reducing bacteria (SRB), where its adherence on the metal surface leads to Direct Electron Transfer (DET)-MIC. This review thus aims to summarize the recent progress and the lacunae in mitigation of MIC. We further highlight the susceptibility of stainless steel grades to SRB pitting corrosion and have included recent developments in understanding the quorum sensing mechanisms in SRB, which governs the proliferation process of the microbial community. There is a paucity of literature on the utilization of anti-quorum sensing molecules against SRB, indicating that the area of study is in its nascent stage of development. Furthermore, microbial adherence to metal is significantly impacted by surface chemistry and topography. Thus, we have reviewed the application of super wettable surfaces such as superhydrophobic, superhydrophilic, and slippery liquid-infused porous surfaces as "anti-corrosion coatings" in preventing adhesion of SRB, providing a potential avenue for the development of practical and feasible solutions in the prevention of MIC. The emerging field of super wettable surfaces holds significant potential for advancing efficient and practical MIC prevention techniques.


Assuntos
Desulfovibrio , Microbiota , Corrosão , Transporte de Elétrons , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...