Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.012
Filtrar
1.
Sci Rep ; 14(1): 8046, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580748

RESUMO

Osteoarthritis is a common chronic disease and major cause of disability and chronic pain in ageing populations. In this pathology, the entire joint is involved, and the regeneration of articular cartilage still remains one of the main challenges. Here, we investigated the molecular mechanisms underlying cartilage regeneration in young mice using a full-thickness cartilage injury (FTCI) model. FTCI-induced cartilage defects were created in the femoral trochlea of young and adult C57BL/6 mice. To identify key molecules and pathways involved in the early response to cartilage injury, we performed RNA sequencing (RNA-seq) analysis of cartilage RNA at 3 days after injury. Young mice showed superior cartilage regeneration compared to adult mice after cartilage injury. RNA-seq analysis revealed significant upregulation of genes associated with the immune response, particularly in the IFN-γ signaling pathway and qRT-PCR analysis showed macrophage polarization in the early phase of cartilage regeneration (3 days) in young mice after injury, which might promote the removal of damaged or necrotic cells and initiate cartilage regeneration in response to injury. IFN-γR1- and IFN-γ-deficient mice exhibited impaired cartilage regeneration following cartilage injury. DMM-induced and spontaneous OA phenotypes were exacerbated in IFN-γR1-/- mice than in wild-type mice. Our data support the hypothesis that IFN-γ signaling is necessary for cartilage regeneration, as well as for the amelioration of post-traumatic and age-induced OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Cartilagem Articular/patologia , Modelos Animais de Doenças , Interferon gama/genética , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Regeneração , Transdução de Sinais
2.
BMC Genomics ; 25(1): 362, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609856

RESUMO

BACKGROUND: Rose is recognized as an important ornamental plant worldwide, and it is also one of the most widely used flowers in gardens. At present, the improvement of rose traits is still difficult and uncertain, and molecular breeding can provide new ideas for the improvement of modern rose varieties. Somatic embryos are quite good receptors for genetic transformation. However, little is known about the molecular mechanisms underlying during the regeneration process of rose somatic embryos. To elucidate the molecular regulation mechanism of somatic embryo plantlet regeneration, the relationship between the differences in traits of the two different regenerated materials and the significantly differentially expressed genes (DEGs) related to phytohormone pathways in the process of regeneration were be investigated. RESULTS: These representative two regenerated samples from single-piece cotyledonary somatic embryo (SPC) culture of Rosa hybrida 'John F. Kennedy', were harvested for transcriptome analysis, with the SPC explants at the initial culture (Day 0) as the control. The differentially expressed genes (DEGs) in the materials from two different types for regeneration approach (SBF type: the regeneration approach type of single bud formed from SPC explants; MBF type: the regeneration approach type of multiple buds formed from SPC explants) were be screened by means of the transcriptome sequencing technology. In this study, a total of about 396.24 million clean reads were obtained, of which 78.95-82.92% were localized to the reference genome, compared with the initial material (CK sample), there were 5594 specific genes in the material of SBF type and 6142 specific genes in the MBF type. The DEGs from the SBF type material were mainly concentrated in the biological processes of GO terms such as phytohormones, substance transport, cell differentiation, and redox reaction. The KEGG enrichment analysis revealed these DEGs were more active in ubiquinone and other terpenoid-quinone biosynthesis, fatty acid elongation, steroid biosynthesis, and glycosphingolipid biosynthesis-globo and isoglobo series. In contrast, the DEGs induced by the MBF type material were mainly associated with the biological processes such as phytohormones, phosphorylation, photosynthesis and signal transduction. According to KEGG analysis, these DEGs of MBF type were significantly enriched in the porphyrin and chlorophyll metabolism, brassinosteroid biosynthesis, carotenoid biosynthesis, and peroxisome. Furthermore, the results from the phytohormone pathways analysis showed that the auxin-responsive factor SAUR and the cell wall modifying enzyme gene XTH were upregulated for expression but the protein phosphatase gene PP2C was downregulated for expression in SBF type; the higher expression of the ethylene receptor ETR, the ethylene transduction genes EBF1/2, the transcription factor EIN3, and the ethylene-responsive transcription factor ERF1/2 were induced by MBF type. CONCLUSIONS: According to the GO and KEGG analysis, it indicated the DEGs between two different regenerated materials from somatic embryos were significantly different which might be causing morphological differences. That was somatic embryos from Rosa hybrida 'John F. Kennedy' could regenerate plantlet via both classic somatic embryogenesis (seed-like germination) and organogenesis, cotyledonary somatic embryos should be considered as one kind of intermediate materials similiar to callus, rather than the indicator materials for somatic embryogenesis.


Assuntos
Reguladores de Crescimento de Plantas , Rosa , Rosa/genética , Etilenos , Regeneração , Desenvolvimento Embrionário , Fatores de Transcrição
3.
PLoS One ; 19(4): e0301169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557903

RESUMO

At present, the development of plants with improved traits like superior quality, high yield, or stress resistance, are highly desirable in agriculture. Accelerated crop improvement, however, must capitalize on revolutionary new plant breeding technologies, like genetically modified and gene-edited crops, to heighten food crop traits. Genome editing still faces ineffective methods for the transformation and regeneration of different plant species and must surpass the genotype dependency of the transformation process. Tomato is considered an alternative plant model system to rice and Arabidopsis, and a model organism for fleshy-fruited plants. Furthermore, tomato cultivars like Micro-Tom are excellent models for tomato research due to its short life cycle, small size, and capacity to grow at high density. Therefore, we developed an indirect somatic embryo protocol from cotyledonary tomato explants and used this to generate epigenetically edited tomato plants for the SlWRKY29 gene via CRISPR-activation (CRISPRa). We found that epigenetic reprogramming for SlWRKY29 establishes a transcriptionally permissive chromatin state, as determined by an enrichment of the H3K4me3 mark. A whole transcriptome analysis of CRISPRa-edited pro-embryogenic masses and mature somatic embryos allowed us to characterize the mechanism driving somatic embryo induction in the edited tomato cv. Micro-Tom. Furthermore, we show that enhanced embryo induction and maturation are influenced by the transcriptional effector employed during CRISPRa, as well as by the medium composition and in vitro environmental conditions such as osmotic components, plant growth regulators, and light intensity.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Melhoramento Vegetal , Desenvolvimento Embrionário , Regeneração , Edição de Genes , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta
4.
PLoS One ; 19(4): e0300470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630702

RESUMO

Urban regeneration programmes are interventions meant to enhance the wellbeing of residents in deprived areas, although empirical evidence reports mixed results. We evaluated the health impact of a participatory and neighbourhood-wide urban regeneration programme, Pla de Barris 2016-2020, in Barcelona. A pre-post with a comparison group study design. Using data from a cross-sectional survey performed in 2016 and 2021. The health outcomes analysed were mental health, alcohol and psychotropic drug use, perceived health status, physical activity and obesity. Depending on the investment, two intervention groups were defined: moderate- and high-intensity intervention groups. The analysis combined difference-in-difference estimation with an inverse weighting derived from a propensity score to reduce potential biases. The impact of the intervention in percentages and its confidence interval were estimated with a linear probability model with clustered adjusted errors. The intervention had a positive impact on health outcomes in women in the high-intensity intervention group: a reduction of 15.5% in the relative frequency of those experiencing poor mental health, and of 21.7% in the relative frequency of those with poor self-perceived health; and an increase of 13.7% in the relative frequency of those doing physical activity. No positive impact was observed for men, but an increase of 10.3% in the relative frequency of those using psychotropic drugs in the high-intensity intervention group. This study shows positive short-term effects of the urban regeneration programme Pla de Barris 2016-2020 on health outcomes in women in the high-intensity intervention group. These results can guide future interventions in other areas.


Assuntos
Exercício Físico , Características de Residência , Masculino , Humanos , Feminino , Estudos Transversais , Nível de Saúde , Regeneração
5.
Clin Orthop Surg ; 16(2): 275-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562624

RESUMO

Background: To date, the efficiency of collagen meniscal scaffold implantation in Asian patients with partial meniscal defects has not been evaluated. In addition, no study has quantitatively analyzed meniscal regeneration using three-dimensional (3D) volume analysis after collagen scaffold implantation. We aimed to compare meniscal regeneration using 3D volume analysis between Asian patients undergoing collagen-based meniscal scaffold implantation after partial meniscectomy and those undergoing only partial meniscectomy. Methods: Nineteen patients who underwent collagen-based meniscal scaffold implantation and 14 who underwent partial meniscectomy were analyzed with a prospective randomized control design for 12 months postoperatively. The demographic characteristics, Kellgren-Lawrence grade, and location of the injury lesion (medial or lateral meniscus) were not significantly different between the groups. Using 3D volume analysis with magnetic resonance imaging (MRI), the meniscus-removing ratio during the operative procedure and the meniscus defect-filling ratio were measured during the 12-month postoperative period. Clinically, the visual analog scale, International Knee Documentation Committee score, and Knee Injury and Osteoarthritis Outcome Score were evaluated. The Whole-Organ Magnetic Resonance Imaging Score (WORMS) and Genovese grade were also evaluated using MRI. Results: In the 3D volume analysis, the average meniscus-removing ratio during surgery was not significantly different between the groups (-9.3% vs. -9.2%, p = 0.984). The average meniscus defect-filling ratio during the postoperative 12-month period was 7.5% in the scaffold group and -0.4% in the meniscectomy group (p < 0.001). None of the clinical results were significantly different between the scaffold and meniscectomy groups at 12 months postoperatively. The average change in the total WORMS score was not significantly different between the groups (0 vs. 1.9, p = 0.399). The Genovese grade of the implanted collagen scaffold did not significantly change during the follow-up period in terms of morphology and size (p = 0.063); however, the grade significantly improved in terms of signal intensity (p = 0.001). Conclusions: Definite meniscal regeneration and stable scaffold incorporation were observed after collagen-based meniscal scaffold implantation in Asian patients during 12 months of follow-up. A long-term follow-up study with a larger cohort is required to determine the advantages of collagenous meniscal scaffold implantation in Asian patients.


Assuntos
Meniscos Tibiais , Tecidos Suporte , Humanos , Seguimentos , Resultado do Tratamento , Estudos Prospectivos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Colágeno , Regeneração
6.
Biochemistry (Mosc) ; 89(2): 269-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622095

RESUMO

Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as "guide rails" for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free "morphogenetic space" containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a "morphogenetic space" could radically improve the results of organ regeneration using both local and exogenous stem cells.


Assuntos
Regeneração , Células-Tronco , Animais , Desenvolvimento Embrionário , Colágeno , Mamíferos
8.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575923

RESUMO

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais , Polpa Dentária , Células-Tronco , Diferenciação Celular , Regeneração , DNA/metabolismo , Proliferação de Células/fisiologia
9.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(3): 274-278, 2024 Mar 09.
Artigo em Chinês | MEDLINE | ID: mdl-38432661

RESUMO

Pulpitis is an infectious disease characterized by persistent inflammation of dental pulp and severe pain of patients, root canal treatment increases the risk of tooth fracture, discoloration and reinfection. Therefore, pulp injury repair and pulp regeneration become the new targets of pulpitis treatment. Autophagy is considered as an important defense and protective mechanism, thus plays an important role in preventing the host from excessive inflammatory reaction. There are few reports on the regulative mechanisms and therapeutic strategies of autophagy on pulp inflammation progression, therefore, this paper reviewed the role of autophagy on the progression of pulpitis, also reviewed the research progress of autophagy on dental pulp injury repair and regeneration, aiming to provide theoretical support for further research and clinical application.


Assuntos
Polpa Dentária , Pulpite , Humanos , Autofagia , Inflamação , Pulpite/terapia , Regeneração
10.
Sci Rep ; 14(1): 6670, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509148

RESUMO

Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.


Assuntos
Orelha Interna , Peixes Listrados , Sistema da Linha Lateral , Perciformes , Animais , Masculino , Feminino , Peixe-Zebra/genética , Células Ciliadas Auditivas/metabolismo , Regeneração/genética , Mamíferos
11.
Am J Chin Med ; 52(2): 513-539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533568

RESUMO

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Assuntos
Astragalus propinquus , 60552 , Idoso , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Pré-Escolar , Astragalus propinquus/química , Intestinos , Transdução de Sinais , Intestino Delgado , Células-Tronco , Polissacarídeos/farmacologia , Envelhecimento , Regeneração
12.
BMC Oral Health ; 24(1): 319, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461281

RESUMO

BACKGROUND: In the regenerative endodontic procedures, scaffolds could influence the prognosis of affected teeth. Currently, there is controversy regarding the postoperative evaluation of various scaffolds for pulp regeneration. The objective of this study was to access whether other scaffolds, used alone or in combination with blood clot (BC), are more effective than BC in regenerative endodontic procedures. METHODS: We systematically search the PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), Embase, and Google Scholar databases. Randomized controlled trials examining the use of BC and other scaffold materials in the regenerative endodontic procedures were included. A random effects model was used for the meta-analysis. The GRADE method was used to determine the quality of the evidence. RESULTS: We screened 168 RCTs related to young permanent tooth pulp necrosis through electronic and manual retrieval. A total of 28 RCTs were related to regenerative endodontic procedures. Ultimately, 12 articles met the inclusion criteria and were included in the relevant meta-analysis. Only 2 studies were assessed to have a low risk of bias. High quality evidence indicated that there was no statistically significant difference in the success rate between the two groups (RR=0.99, 95% CI=0.96 to 1.03; 434 participants, 12 studies); low-quality evidence indicated that there was no statistically significant difference in the increase in root length or root canal wall thickness between the two groups. Medium quality evidence indicated that there was no statistically significant difference in pulp vitality testing between the two groups. CONCLUSIONS: For clinical regenerative endodontic procedures, the most commonly used scaffolds include BC, PRP, and PRF. All the different scaffolds had fairly high clinical success rates, and the difference was not significant. For regenerative endodontic procedures involving young permanent teeth with pulp necrosis, clinical practitioners could choose a reasonable scaffold considering the conditions of the equipment and patients.


Assuntos
Necrose da Polpa Dentária , Endodontia Regenerativa , Humanos , Polpa Dentária , Necrose da Polpa Dentária/terapia , Regeneração , Tratamento do Canal Radicular/métodos
13.
BMC Oral Health ; 24(1): 394, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539149

RESUMO

OBJECTIVE: The objective of this study was to assess the characterization of human acellular amniotic membrane (HAAM) using various decellularization methods and their impact on the proliferation and differentiation of human dental pulp stem cells (DPSCs). The goal was to identify scaffold materials that are better suited for pulp regeneration. METHODS: Six different decellularization methods were used to generate the amniotic membranes. The characteristics of these scaffolds were examined through hematoxylin and eosin (H&E) staining, scanning electron microscopy (SEM), and immunohistofluorescence staining (IHF). The DPSCs were isolated, cultured, and their capacity for multidirectional differentiation was verified. The third generation (P3) DPSCs, were then combined with HAAM to form the decellularized amniotic scaffold-dental pulp stem cell complex (HAAM-DPSCs complex). Subsequently, the osteogenic capacity of the HAAM-DPSCs complex was evaluated using CCK8 assay, live-dead cell staining, alizarin red and alkaline phosphatase staining, and real-time quantitative PCR (RT-PCR). RESULTS: Out of the assessed decellularization methods, the freeze-thaw + DNase method and the use of ionic detergent (CHAPS) showed minimal changes in structure after decellularization, making it the most effective method. The HAAM-DPSCs complexes produced using this method demonstrated enhanced biological properties, as indicated by CCK8, alizarin red, alkaline phosphatase staining, and RT-PCR. CONCLUSION: The HAAM prepared using the freeze-thaw + DNase method and CHAPS methods exhibited improved surface characteristics and significantly enhanced the proliferation and differentiation capacity of DPSCs when applied to them. The findings, therefore demonstrate the capacity for enhanced pulp regeneration therapy.


Assuntos
Âmnio , Antraquinonas , Polpa Dentária , Humanos , Âmnio/metabolismo , Células Cultivadas , Fosfatase Alcalina/metabolismo , Células-Tronco/metabolismo , Regeneração , Osteogênese , Diferenciação Celular , Desoxirribonucleases/metabolismo , Proliferação de Células
14.
Stem Cell Res Ther ; 15(1): 91, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539224

RESUMO

Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineering-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summarized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskeletal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accelerate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.


Assuntos
Tecido Adiposo , Exossomos , Tecido Adiposo/metabolismo , Adipócitos , Regeneração , Materiais Biocompatíveis , Exossomos/metabolismo , Células-Tronco/metabolismo
15.
Biomolecules ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540750

RESUMO

Pulpitis is a common and frequent disease in dental clinics. Although vital pulp therapy and root canal treatment can stop the progression of inflammation, they do not allow for genuine structural regeneration and functional reconstruction of the pulp-dentin complex. In recent years, with the development of tissue engineering and regenerative medicine, research on stem cell-based regenerative endodontic therapy (RET) has achieved satisfactory preliminary results, significantly enhancing its clinical translational prospects. As one of the crucial paracrine effectors, the roles and functions of exosomes in pulp-dentin complex regeneration have gained considerable attention. Due to their advantages of cost-effectiveness, extensive sources, favorable biocompatibility, and high safety, exosomes are considered promising therapeutic tools to promote dental pulp regeneration. Accordingly, in this article, we first focus on the biological properties of exosomes, including their biogenesis, uptake, isolation, and characterization. Then, from the perspectives of cell proliferation, migration, odontogenesis, angiogenesis, and neurogenesis, we aim to reveal the roles and mechanisms of exosomes involved in regenerative endodontics. Lastly, immense efforts are made to illustrate the clinical strategies and influencing factors of exosomes applied in dental pulp regeneration, such as types of parental cells, culture conditions of parent cells, exosome concentrations, and scaffold materials, in an attempt to lay a solid foundation for exploring and facilitating the therapeutic strategy of exosome-based regenerative endodontic procedures.


Assuntos
Exossomos , Endodontia Regenerativa , Endodontia Regenerativa/métodos , Polpa Dentária , Regeneração , Medicina Regenerativa
17.
Biomaterials ; 307: 122529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489911

RESUMO

Muscle tissue engineering is a promising therapeutic strategy for volumetric muscle loss (VML). Among them, decellularized extracellular matrix (dECM) biological scaffolds have shown certain effects in restoring muscle function. However, researchers have inconsistent or even contradictory results on whether dECM biological scaffolds can efficiently regenerate muscle fibers and restore muscle function. This suggests that therapeutic strategies based on dECM biological scaffolds need to be further optimized and developed. In this study, we used a recellularization method of perfusing adipose-derived stem cells (ASCs) and L6 into adipose dECM (adECM) through vascular pedicles. On one hand, this strategy ensures sufficient quantity and uniform distribution of seeded cells inside scaffold. On the other hand, auxiliary L6 cells addresses the issue of low myogenic differentiation efficiency of ASCs. Subsequently, the treatment of VML animal experiments showed that the combined recellularization strategy can improve muscle regeneration and angiogenesis than the single ASCs recellularization strategy, and the TA of former had greater muscle contraction strength. Further single-nucleus RNA sequencing (snRNA-seq) analysis found that L6 cells induced ASCs transform into a new subpopulation of cells highly expressing Mki67, CD34 and CDK1 genes, which had stronger ability of oriented myogenic differentiation. This study demonstrates that co-seeding ASCs and L6 cells through vascular pedicles is a promising recellularization strategy for adECM biological scaffolds, and the engineered muscle tissue constructed based on this has significant therapeutic effects on VML. Overall, this study provides a new paradigm for optimizing and developing dECM-based therapeutic strategies.


Assuntos
Matriz Extracelular Descelularizada , Doenças Musculares , Animais , Matriz Extracelular , Regeneração , Engenharia Tecidual/métodos , Células-Tronco , Obesidade , Músculo Esquelético/fisiologia , Tecidos Suporte
19.
Pharmacol Ther ; 257: 108638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548089

RESUMO

Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.


Assuntos
Cardiopatias Congênitas , Miocárdio , Humanos , Miocárdio/metabolismo , Coração , Pericárdio , Transdução de Sinais , Cardiopatias Congênitas/metabolismo , Regeneração , Epigênese Genética , Miócitos Cardíacos
20.
J Mol Cell Cardiol ; 189: 66-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432502

RESUMO

The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.


Assuntos
Coração , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Mamíferos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Regeneração , Coração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...