Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.912
Filtrar
1.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
2.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557720

RESUMO

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Assuntos
Compostos de Amônio , Microbiota , Águas Residuárias , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Bactérias , Biofilmes , Nitrogênio , Esgotos , Desnitrificação
3.
Environ Geochem Health ; 46(5): 174, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592609

RESUMO

The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.


Assuntos
Compostos de Amônio , Insuficiência Renal Crônica , Humanos , Adulto , Nitratos , China/epidemiologia , Material Particulado/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Solo , Sulfatos , Óxidos de Enxofre
4.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611705

RESUMO

Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.


Assuntos
Compostos de Amônio , Compostos de Amônio/farmacologia , Amônia , Ácidos Cetoglutáricos/farmacologia , Carbono , Nitrogênio , Trifosfato de Adenosina
5.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
6.
Environ Microbiol ; 26(4): e16610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576217

RESUMO

Coral reef ecosystems are now commonly affected by major climate and disease disturbances. Disturbance impacts are typically recorded using reef benthic cover, but this may be less reflective of other ecosystem processes. To explore the potential for reef water-based disturbance indicators, we conducted a 7-year time series on US Virgin Island reefs where we examined benthic cover and reef water nutrients and microorganisms from 2016 to 2022, which included two major disturbances: hurricanes Irma and Maria in 2017 and the stony coral tissue loss disease outbreak starting in 2020. The disease outbreak coincided with the largest changes in the benthic habitat, with increases in the percent cover of turf algae and Ramicrusta, an invasive alga. While sampling timepoint contributed most to changes in reef water nutrient composition and microbial community beta diversity, both disturbances led to increases in ammonium concentration, a mechanism likely contributing to observed microbial community shifts. We identified 10 microbial taxa that were sensitive and predictive of increasing ammonium concentration. This included the decline of the oligotrophic and photoautotrophic Prochlorococcus and the enrichment of heterotrophic taxa. As disturbances impact reefs, the changing nutrient and microbial regimes may foster a type of microbialization, a process that hastens reef degradation.


Assuntos
Compostos de Amônio , Antozoários , Tempestades Ciclônicas , Animais , Ecossistema , Ilhas Virgens Americanas , Recifes de Corais , Água
7.
J Environ Sci (China) ; 142: 129-141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527879

RESUMO

The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.


Assuntos
Compostos de Amônio , Cianobactérias , Desnitrificação , Nitrogênio/análise , Áreas Alagadas , RNA Ribossômico 16S , Nitrificação , Biofilmes
8.
Sci Total Environ ; 926: 171890, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521280

RESUMO

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Assuntos
Compostos de Amônio , Águas Residuárias , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Anaerobiose , Fósforo , Carbono , Propionatos , Desnitrificação , Reatores Biológicos/microbiologia , Nitrogênio , Acetatos , Glucose
9.
Sci Total Environ ; 926: 171929, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522528

RESUMO

The emerging nitrogen removal process known as CANDAN (Complete Ammonium and Nitrate removal via Denitratation-Anammox over Nitrite) has been developed in Sequencing Batch Reactors (SBRs). Yet, starting up and maintaining stability in continuous-flow reactors remain challenging. This study explores the feasibility of transitioning the CANDAN process from an anammox-dominated process by introducing appropriate external organics to facilitate indigenous nitrite-producing denitrification community in an Upflow Anaerobic Sludge Blanket (UASB) reactor. 150-day operation results indicate that under feeding rates of domestic wastewater at 0.54 L/h and nitrate-containing wastewater at 1.08 L/h, excellent N removal was achieved, with effluent TN below 10.0 mg N/L. Adding external sodium acetate at a COD/NO3--N = 2.0 triggered denitratation, ex-situ denitrification activity tests showed increased nitrite production rates, maintaining the nitrate-to-nitrite transformation ratio (NTR) above 90 %. Consequently, anammox activity was consistently maintained, dominating Total Nitrogen (TN) removal with a contribution as high as 78.3 ± 8.0 %. Anammox functional bacteria, Brocadia and Kuenenia were identified and showed no decrease throughout the operation, indicating the robustness of the anammox process. Notably, the troublesome of sludge flotation, did not occur, also contributing to sustained outstanding performance. In conclusion, this study advances our understanding of the synergistic interplay between anammox and denitrifying bacteria in the Anammox-UASB system, offering technical insights for establishing a stable continuous-flow CANDAN process for simultaneous ammonium and nitrate removal.


Assuntos
Compostos de Amônio , Esgotos , Nitritos , Águas Residuárias , Nitratos , Desnitrificação , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Anaerobiose , Nitrogênio/análise , Bactérias
10.
Sci Total Environ ; 926: 171900, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527552

RESUMO

The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support. The results show that direct inhibitory strategies including intermittent aeration and approximately 35 mg/L free ammonia had unusual weak inhibitory effects on NOB activity. Subsequently, the exogenous Anammox from sidestream employed as a competitive bio-augmentation approach rapidly inhibited NOB dynamics. Evidence suggests that the damaged hydroxyapatite granules under low pH conditions might have contributed to NOB dominance by diminishing Anammox bacteria activity, thereby creating a substrate-rich environment favoring NOB survival. In contrast, the introduction of exogenous Candidatus Kuenenia facilitated the nitrogen removal efficiency from 32.5 % to over 80 %. This coincided with a decrease in the relative abundance of Nitrospira from 16.5 % to 2.7 % and NOB activity from 0.34 to 0.07 g N/(g mixed liquor volatile suspended solid)/d. Metagenomic analysis reveals a decrease in the functional potential of most nitrite transport proteins, coupled with a significant increase in eukaryotic-like serine/threonine-protein kinase involved in cellular regulation, during the Anammox activity recovery. This study's findings reveal the feasibility of the bio-augmentation based on substrate competition, wherein sidestream processes support the mainstream PN/A integration, offering significant potential for practical applications.


Assuntos
Compostos de Amônio , Nitritos , Nitritos/metabolismo , Oxirredução , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nitrogênio/metabolismo , Esgotos/microbiologia , Compostos de Amônio/metabolismo
11.
Sci Total Environ ; 926: 171963, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537835

RESUMO

Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Óxido Ferroso-Férrico , Rios , Ecossistema , Compostos Férricos , Desnitrificação , Ferro , Nitrogênio , Carbono , Oxirredução
12.
Sci Total Environ ; 926: 171993, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547967

RESUMO

Calcium nitrate addition is economically viable and highly efficient for the in-situ treatment of contaminated sediment and enhancement of surface water quality, particularly in rural areas. However, conventional nitrate addition technologies have disadvantages such as excessive nitrate release, sharp ammonium increase, and weakened sulfide oxidation efficiency owing to rapid nitrate injection into the sediment. To resolve these defects, we propose a piped-slow-release (PSR) calcium nitrate dosing method and investigate its treatment efficiency and underlying mechanisms. The results illustrated that PSR dosing had a longer half-life (t1/2 = 5.08 days) and a lower maximum apparent nitrate escape rate of 1.28 % than conventional nitrate injection and other dosing methods. In addition, the PSR managed the inorganic nitrogen release into the overlying water, and after the treatment, the nitrate, ammonium, and nitrite concentrations of 0 mg/L, 8.60 mg/L, and 0 mg/L on day 28 were close to those of the control group (0 mg/L, 8.76 mg/L, and 0 mg/L, respectively). Moreover, the PSR method maintained a moderate nitrate concentration of approximately 3000 mg/L in sediment interstitial water by its controlled-release design, thus greatly enhancing the sulfide oxidation efficiency by relieving the inhibitory effects of high nitrate concentrations, with 83.0 % sulfide being eradicated within 5 days. Sulfide-ferrous nitrate reduction (denitrification and dissimilatory nitrate reduction to ammonium) genera (e.g., Sulfurimonas, Thiobacillus, and Thioalkalispira) were successively enhanced and dominated the microbial community, and the related functional genes displayed high relative abundances. These results imply that the PSR dosing method for calcium nitrate, characterized by flexible operation, high efficiency, low cost, and controllable processes, is appropriate for remediating black-odorous sediment in rural areas.


Assuntos
Compostos de Amônio , Compostos de Cálcio , Nitratos , Odorantes , Sulfetos , Nitrogênio , Oxirredução , Desnitrificação
13.
Int J Biol Macromol ; 265(Pt 2): 130795, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492696

RESUMO

The utilization of biomass-based conductive polymer hydrogels in wearable electronics holds great promise for advancing performance and sustainability. An interpenetrating network of polyacrylamide/2-hydroxypropyltrimethyl ammonium chloride chitosan (PAM/HACC) was firstly obtained through thermal-initiation polymerization of AM monomers in the presence of HACC. The positively charged groups on HACC provide strong electrostatic interactions and hydrogen bonding with the PAM polymer chains, leading to improved mechanical strength and stability of the hydrogel network. Subsequently, the PAM/HACC networks served as the skeletons for the in-situ polymerization of polypyrrole (PPy), and then the resulting conductive hydrogel demonstrated stable electromagnetic shielding performance (40 dB), high sensitivity for strain sensing (gauge factor = 2.56). Moreover, the incorporation of quaternary ammonium chitosan into PAM hydrogels enhances their antimicrobial activity, making them more suitable for applications in bacterial contamination or low-temperature environments. This conductive hydrogel, with its versatility and excellent mechanical properties, shows great potential in applications such as electronic skin and flexible/wearable electronics.


Assuntos
Resinas Acrílicas , Compostos de Amônio , Quitosana/análogos & derivados , Compostos de Amônio Quaternário , Polímeros , Pirróis , Antibacterianos/farmacologia , Condutividade Elétrica , Hidrogéis
14.
BMC Plant Biol ; 24(1): 218, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532351

RESUMO

BACKGROUND: In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. RESULTS: The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3-/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3-/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. CONCLUSIONS: Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.


Assuntos
Compostos de Amônio , Anemia Hipocrômica , Deficiências de Ferro , Vitis , Nitrogênio/metabolismo , Nitratos/metabolismo , Anemia Hipocrômica/metabolismo , Vitis/genética , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo
15.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38509821

RESUMO

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Assuntos
Compostos de Amônio , Incrustação Biológica , Suínos , Animais , Amônia/análise , Águas Residuárias , Incrustação Biológica/prevenção & controle , Reciclagem
16.
Environ Sci Technol ; 58(13): 6049-6057, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525996

RESUMO

High Cl- concentration in saline wastewater (e.g., landfill leachate) limits wastewater purification. Catalytic Cl- conversion into reactive chlorine species (RCS) arises as a sustainable strategy, making the salinity profitable for efficient wastewater treatment. Herein, aiming to reveal the structure-property relationship in Cl- utilization, bismuth oxychloride (BiOCl) photocatalysts with coexposed {001} and {110} facets are synthesized. With an increasing {001} ratio, the RCS production efficiency increases from 75.64 to 96.89 µg L-1 min-1. Mechanism investigation demonstrates the fast release of lattice Cl- as an RCS and the compensation of ambient Cl-. Correlation analysis between the internal electric field (IEF, parallel to [001]) and normalized efficiency on {110} (kRCS/S{110}, perpendicular to [001]) displays a coefficient of 0.86, validating that the promoted carrier dynamics eventually affects Cl- conversion on the open layered structure. The BiOCl photocatalyst is well behaved in ammonium (NH4+-N) degradation ranging from 20 to 800 mg N L-1 with different chlorinity (3-12 g L-1 NaCl). The sustainable Cl- conversion into RCS also realizes 85.4% of NH4+-N removal in the treatment of realistic landfill leachate (662 mg of N L-1 NH4+-N). The structure-property relationship provides insights into the design of efficient catalysts for environment remediation using ambient Cl-.


Assuntos
Compostos de Amônio , Bismuto , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/química , Salinidade
17.
J Mol Evol ; 92(2): 121-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489069

RESUMO

Cyanobacteria are recognised for their pivotal roles in aquatic ecosystems, serving as primary producers and major agents in diazotrophic processes. Currently, the primary focus of cyanobacterial research lies in gaining a more detailed understanding of these well-established ecosystem functions. However, their involvement and impact on other crucial biogeochemical cycles remain understudied. This knowledge gap is partially attributed to the challenges associated with culturing cyanobacteria in controlled laboratory conditions and the limited understanding of their specific growth requirements. This can be circumvented partially by the culture-independent methods which can shed light on the genomic potential of cyanobacterial species and answer more profound questions about the evolution of other key biogeochemical functions. In this study, we assembled 83 cyanobacterial genomes from metagenomic data generated from environmental DNA extracted from a brackish water lagoon (Chilika Lake, India). We taxonomically classified these metagenome-assembled genomes (MAGs) and found that about 92.77% of them are novel genomes at the species level. We then annotated these cyanobacterial MAGs for all the encoded functions using KEGG Orthology. Interestingly, we found two previously unreported functions in Cyanobacteria, namely, DNRA (Dissimilatory Nitrate Reduction to Ammonium) and DMSP (Dimethylsulfoniopropionate) synthesis in multiple MAGs using nirBD and dsyB genes as markers. We validated their presence in several publicly available cyanobacterial isolate genomes. Further, we identified incongruities between the evolutionary patterns of species and the marker genes and elucidated the underlying reasons for these discrepancies. This study expands our overall comprehension of the contribution of cyanobacteria to the biogeochemical cycling in coastal brackish ecosystems.


Assuntos
Compostos de Amônio , Cianobactérias , Ecossistema , Cianobactérias/genética , Metagenoma , Nitratos
18.
Environ Sci Technol ; 58(14): 6250-6257, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551595

RESUMO

Methane emissions present a significant environmental challenge in both natural and engineered aquatic environments. Denitrifying anaerobic methane oxidation (N-DAMO) has the potential for application in wastewater treatment plants. However, our understanding of the N-DAMO process is primarily based on studies conducted on environmental samples or enrichment cultures using metagenomic approaches. To gain deeper insights into N-DAMO, we used antimicrobial compounds to study the function and physiology of 'Candidatus Methanoperedens nitroreducens' and 'Candidatus Methylomirabilis oxyfera' in N-DAMO enrichment cultures. We explored the effects of inhibitors and antibiotics and investigated the potential application of N-DAMO in wastewater contaminated with ammonium and heavy metals. Our results showed that 'Ca. M. nitroreducens' was susceptible to puromycin and 2-bromoethanesulfonate, while the novel methanogen inhibitor 3-nitrooxypropanol had no effect on N-DAMO. Furthermore, 'Ca. M. oxyfera' was shown to be susceptible to the particulate methane monooxygenase inhibitor 1,7-octadiyne and a bacteria-suppressing antibiotic cocktail. The N-DAMO activity was not affected by ammonium concentrations below 10 mM. Finally, the N-DAMO community appeared to be remarkably resistant to lead (Pb) but susceptible to nickel (Ni) and cadmium (Cd). This study provides insights into microbial functions in N-DAMO communities, facilitating further investigation of their application in methanogenic, nitrogen-polluted water systems.


Assuntos
Compostos de Amônio , Anti-Infecciosos , Nitratos , Águas Residuárias , Anaerobiose , Metano , Bactérias , Oxirredução , Nitritos , Reatores Biológicos , Desnitrificação
19.
Bioresour Technol ; 399: 130617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513923

RESUMO

This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.


Assuntos
Compostos de Amônio , Compostagem , Eliminação de Resíduos , Substâncias Húmicas , Fosfatos , Carbono , Nitrogênio/química , Alimentos , Eliminação de Resíduos/métodos , Solo , Bactérias , Esqueleto/química , Esterco
20.
Bioresour Technol ; 399: 130639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552863

RESUMO

This study focuses on nitrous oxide (N2O) emissions during hypersaline (4 % salinity) nitritation in continuously fed and mixed fixed bed reactors. In the presence of high concentrations of nitrite and ammonium, the percent yield of N2O emissions from ammonium removed decreased with increasing dissolved oxygen (DO). However, N2O production continued even at a high DO of 15 mg/L. Bulk ammonium concentration (not ammonia) was found to be the main controlling factor for N2O emissions under high and low DO during both nitritation and nitrification. Reducing bulk ammonium concentrations below 1 mg N/L in the nitritation reactor under both high and low DO conditions resulted in a reduction of N2O emissions of approximately 90 %. Under full nitrification and low DO, reducing nitrite concentrations below 0.3 mg N/L resulted in a 60 % reduction in N2O emissions. Similar results were observed in a low salinity reactor.


Assuntos
Compostos de Amônio , Óxido Nitroso , Nitritos , Reatores Biológicos , Nitrificação , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...