Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.634
Filtrar
1.
J Microencapsul ; 41(3): 190-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602138

RESUMO

AIMS: To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS: Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS: Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION: The prepared krill oil emulsions have great potential to become a new krill oil supplement.


Assuntos
Caseínas , Euphausiacea , Animais , Emulsões/química , Proteínas do Soro do Leite/química , Óleos
2.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633149

RESUMO

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Assuntos
Água Potável , Doença de Newcastle , Panax , Óleos de Plantas , Timol , Thymus (Planta) , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Anticorpos Antivirais , Óleos
3.
Chemosphere ; 355: 141715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554861

RESUMO

This study evaluates pyrolysis products obtained from biomasses (silver grass, pine, and acacia) harvested from heavy-metal-contaminated soil. To do so, we utilized two methods: a batch one-stage pyrolysis, and a continuous two-stage pyrolysis. The study results show that the yields and characteristics of bio-oils and biochars varied depending on the pyrolysis process and the type of biomass. The two-stage pyrolysis having two reactors (auger and fluidized bed reactors) appeared to be very suitable for specific chemicals production such as acetic acid, acetol, catechol, and levoglucosan. The biochar obtained from the fluidized-bed reactor of two-stage pyrolysis had high thermal stability, high crystallinity, high inorganic content, and a small number of functional groups. In contrast, the biochar obtained from the one-stage pyrolysis had low thermal stability, low crystallinity, a high carbon content, and a large number of functional groups. The biochar obtained from the two-stage pyrolysis appeared to be suitable as a material for catalyst support and as an adsorbent. The biochar obtained from one-stage pyrolysis appeared to be a suitable as a soil amendment, as an adsorbent, and as a precursor of activated carbon. All biochars showed a negative carbon footprint. In the end, this study, which was conducted using two different processes, was able to obtain the fact that products of pyrolysis biomass contaminated with heavy metals have different characteristics depending on the process characteristics and that their utilization plans are different accordingly. If the optimal utilization method proposed through this study is found, pyrolysis will be able to gain importance as an effective treatment method for biomass contaminated with heavy metals.


Assuntos
Metais Pesados , Pirólise , Biomassa , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Óleos
4.
J Oleo Sci ; 73(4): 583-591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556291

RESUMO

In this study, it is demonstrated that natural microalgae oils, which contain fatty acid components including docosahexaenoic acid (DHA), could be directly applied to fabricate vesicular structures in aqueous phase through a forced formation process. The microalgae oil vesicles had initial average diameters of 170- 230 nm with negative charges apparently caused by dissociation of the fatty acid components. The vesicles possessed excellent stability with lifetimes for at least 450 days. The formation of the vesicular structures with hydrophilic cores/regions was confirmed by the transmission electron microscopy (TEM) image and successful encapsulation of a hydrophilic material. For encapsulation of a hydrophobic material, lutein, the vesicle size was increased probably due to the insertion of lutein into the hydrophobic vesicular bilayer structures. The analysis of Fourier transform infrared (FTIR) spectroscopy suggested that the vesicular bilayer fluidity was decreased by encapsulating lutein. However, the lutein-encapsulating microalgae oil vesicles still possessed high stability and the vesicular structures could maintain intact even at an environmental temperature up to 60℃. Applicability of the microalgae oil vesicles as drug delivery carriers was also demonstrated by successful encapsulation of curcumin. However, when the loaded curcumin was increased to a certain amount, physical stability of the microalgae oil vesicles was significantly reduced. This is probably because the vesicular structures with only limited spaces for accommodating hydrophobic materials were strongly affected by encapsulating a large amount of curcumin. It is interesting to note that by adding egg L-α-phosphatidylcholine, the curcumin encapsulation-induced instability of the microalgae oil vesicles could be alleviated. The results indicated that vesicular structures could be fabricated from microalgae oils and the microalgae oil vesicles were capable of encapsulating hydrophilic or hydrophobic materials for drug delivery applications. The findings lay a background for further dosage form development of nutritional supplements encapsulated by natural microalgae oils.


Assuntos
Curcumina , Microalgas , Microalgas/química , Luteína , Óleos , Portadores de Fármacos/química , Ácidos Docosa-Hexaenoicos
5.
Biomolecules ; 14(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540690

RESUMO

This study explores the impact of rotational frying of three different food products on degradation of sterols, as well as their migration between frying oils and food. The research addresses a gap in the existing literature, which primarily focuses on changes in fat during the frying of single food items, providing limited information on the interaction of sterols from the frying medium with those from the food product. The frying was conducted at 185 ± 5 °C for up to 10 days where French fries, battered chicken, and fish sticks were fried in succession. The sterol content was determined by Gas Chromatography. This research is the first to highlight the influence of the type of oil on sterol degradation in both oils and food. Notably, sterols were found to be most stable when food products were fried in high-oleic low-linolenic rapeseed oil (HOLLRO). High-oleic soybean oil (HOSO) exhibited higher sterol degradation than high-oleic rapeseed oil (HORO). It was proven that cholesterol from fried chicken and fish sticks did not transfer to the fried oils or French fries. Despite initially having the highest sterol content in fish, the lowest sterol amount was recorded in fried fish, suggesting rapid degradation, possibly due to prefrying in oil with a high sterol content, regardless of the medium used.


Assuntos
Brassica napus , Fitosteróis , Animais , Óleo de Soja , Óleo de Brassica napus , Esteróis , Culinária/métodos , Óleos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124086, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442618

RESUMO

Synthetic antioxidants serve as essential protectors against oxidation and deterioration of edible oils, however, prudent evaluation is necessary regarding potential health risks associated with excessive intake. The direct adsorption of antioxidants onto conventional surface-enhanced Raman scattering (SERS) substrates is challenging due to the presence of phenolic hydroxyl groups in their molecular structures, resulting in weak Raman scattering signals and rendering direct SERS detection difficult. In this study, a diazo derivatization reaction was employed to enhance SERS signals by converting antioxidant molecules into azo derivatives, enabling the amplification of the weak Raman scattering signals through the strong vibrational modes induced by the N = N double bond. The resulting diazo derivatives were characterized using UV-visible absorption and infrared spectroscopy, confirming the occurrence of diazo derivatization of the antioxidants. The proposed method successfully achieved the rapid detection of three commonly used synthetic antioxidants, namely butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate (PG) on interfacial self-assembled gold nanoparticles. Furthermore, rapid predictions of BHA, PG, and TBHQ within the concentration range of 1 × 10-6 to 2 × 10-3 mol/L were achieved by integrating a convolutional neural network model. The predictive range of this model surpassed the traditional quantitative method of manually selecting characteristic peaks, with linear coefficients (R2) of 0.9992, 0.9997, and 0.9997, respectively. The recovery of antioxidants in real soybean oil samples ranged from 73.0 % to 126.4 %. Based on diazo derivatization, the proposed SERS method eliminates the need for complex substrates and enables the analysis and determination of synthetic antioxidants in edible oils within 20 min, providing a convenient analytical approach for quality control in the food industry.


Assuntos
Aprendizado Profundo , Hidroquinonas , Nanopartículas Metálicas , Antioxidantes/química , Ouro , Hidroxianisol Butilado/análise , Hidroxianisol Butilado/química , Galato de Propila/análise , Óleos
7.
J Chromatogr A ; 1720: 464804, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38461770

RESUMO

Advanced chemical recycling techniques provide new avenues for handling and recycling mixed plastic waste; pyrolysis is a prominent approach involving heating plastic waste in an oxygen-free environment to create pyrolysis oils. Pyrolysis oils must be thoroughly characterized before being refined into fuels and chemical feedstocks. Here, a method based on supercritical fluid chromatography with ultraviolet detection was developed to analyze plastic waste pyrolysis oils. Multiple stationary phases were examined, and 2-ethyl pyridine was chosen as the best stationary phase for resolving pyrolysis oil components. Different standards and different plastic waste pyrolysis oils were compared across the different stationary phases. Up to three columns were serially coupled to increase efficiency and column capacity. It was found that a general method using ethanol as a modifier and two 2-ethyl pyridine columns could effectively resolve plastic waste pyrolysis oils. The potential for differentiating polyethylene and polypropylene feedstocks was demonstrated using principal component analysis.


Assuntos
Cromatografia com Fluido Supercrítico , Plásticos , Plásticos/química , Pirólise , Óleos/química , Piridinas
8.
Ann Agric Environ Med ; 31(1): 144-146, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549489

RESUMO

INTRODUCTION: This case report describes a case of exogenous lipoid pneumonia (ELP) resulting from the inhalation of a lipoid substance. Lipoid pneumonia, also known as cholesterol pneumonia or golden pneumonia, is an uncommon inflammatory lung disease characterized by the presence of lipid-laden macrophages in the alveolar walls and lung interstitial tissue. Exogenous lipoid pneumonia occurs when substances containing lipids enter the airways through aspiration or inhalation, triggering an inflammatory response. CASE REPORT: The patient in this case study was an 83-year-old woman with hypertension and diabetes mellitus who had been using paraffin oil as a mouthwash for an extended period. The diagnosis of exogenous lipoid pneumonia was established based on the patient's history of exposure to liquid paraffin oil, typical radiological findings, and histopathological examination.


Assuntos
Parafina , Pneumonia Lipoide , Feminino , Humanos , Idoso de 80 Anos ou mais , Pneumonia Lipoide/diagnóstico , Pneumonia Lipoide/diagnóstico por imagem , Óleo Mineral/toxicidade , Pulmão , Óleos/toxicidade
9.
Clin Nutr ESPEN ; 60: 247-253, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479918

RESUMO

BACKGROUND: Dietary intake is an important factor in the development and management of non-alcoholic fatty liver disease (NAFLD) however, optimal food group composition remains unclear. Data on detailed food group intake of NAFLD patients from India is scarce. METHODS & MATERIALS: In this study with 320 participants (160 NAFLD cases and 160 controls), dietary habits were assessed using a 24-h dietary recall for two days and a validated 142-item food frequency questionnaire over the past year. Principal component analysis identified dietary patterns associated with NAFLD among the participants. RESULTS: Cases were having a significantly higher intake of edible oils and fats along with nuts and oilseeds as compared to controls (p < 0.05). There was a positive and significant association with edible oils and fats with NAFLD [OR (95 % CI):1.7 (1.11-2.49) p = 0.013). In dietary pattern analysis western dietary pattern was found to be a risk for NAFLD whereas protective dietary pattern was associated with the decreased risk of NAFLD. CONCLUSION: The overall food groups intake in NAFLD cases and controls was low suggesting lower diet quality. Protective dietary pattern found to be beneficial for NAFLD. High intake of sugars and edible oils associated with western dietary pattern increases the risk of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Fatores de Risco , 60408 , Estudos de Casos e Controles , Dieta Ocidental/efeitos adversos , Óleos
10.
J Colloid Interface Sci ; 663: 591-600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428116

RESUMO

HYPOTHESIS: The key feature of living cells is multicompartmentalization for enzymatic reactions. Artificial cell-like multicompartments with micro domains are appealing to mimic the biological counterparts. In addition, establishing a sustainable, efficient, and controllable reaction system for enzymatic hydrolysis is imperative for the production of natural fatty acids from animal and plant-based fats. EXPERIMENTS: Reverse Janus emulsion microreactors, i.e. (W1 + W2)/O, is constructed through directly using natural fats as continuous phase and aqueous two-phase solutions (ATPS) as inner phases. Enzyme is confined in the compartmented aqueous droplets dominated by the salt of Na2SO4 and polyethylene glycol (PEG). Enzyme catalyzed ester hydrolysis employed as a model reaction is performed under the conditions of agitation-free and mild temperature. Regulation of reaction kinetics is investigated by diverse droplet topology, composition of inner ATPS, and on-demand emulsification. FINDINGS: Excellent enzymatic activity toward hydrolysis of plant and animal oils achieves 88.5 % conversion after 3 h. Compartmented micro domains contribute to condense and organize the enzymes spatially. Timely removal of the products away from reaction sites of oil/water interface "pushed" the reaction forward. Distribution and transfer of enzyme in two aqueous lobes provide extra freedom in the regulation of hydrolysis kinetics, with equilibrium conversion controlled freely from 14.5 % to 88.5 %. Reversible "open" and "shut" of hydrolysis is acheived by on-demand emulsification and spontaneous demulsification. This paper paves the way to advancing progress in compartmentalized emulsion as a sustainable and high-efficiency platform for biocatalytic applications.


Assuntos
Óleos , Cloreto de Sódio , Animais , Hidrólise , Emulsões , Temperatura
11.
Sci Total Environ ; 922: 171279, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428597

RESUMO

Kuwaiti hypersaline soil samples were contaminated with 5 % (w/w) weathered Kuwaiti light crude oil and bioaugmented with autochthonous halophilic hydrocarbonoclastic archaeal and bacterial strains, two each, individually and as consortia. Residual oil contents were determined, and microbial communities were analyzed by culture-dependent and culture-independent approaches initially and seasonally for one year. After one year of the bioremediation process, the mean oil degradation rate was similar across all treated soils including the controlled unbioaugmented one. Oil hydrocarbons were drastically reduced in all soil samples with values ranging from 82.7 % to 93 %. During the bioremediation process, the number of culturable oil-degrading bacteria increased to a range of 142 to 344 CFUx104 g-1 after 12 months of bioaugmentation. Although culture-independent analysis showed a high proportion of inoculants initially, none could be cultured throughout the bioremediation procedure. Within a year, microbial communities changed continually, and 33 species of halotolerant/halophilic hydrocarbonoclastic bacteria were isolated and identified belonged mainly to the three major bacterial phyla Actinobacteria, Proteobacteria, and Firmicutes. The archaeal phylum Halobacterota represented <1 % of the microbial community's relative abundance, which explains why none of its members were cultured. Improving the biodegradability of an already balanced environment by autochthonous bioaugmentation is more involved than just adding the proper oil degraders. This study emphasizes the possibility of a relatively large resistant population, a greater diversity of oil-degrading microorganisms, and the highly selective impacts of oil contamination on hypersaline soil bacterial communities.


Assuntos
Petróleo , Poluentes do Solo , Archaea/metabolismo , Biodegradação Ambiental , Solo , Microbiologia do Solo , Óleos , Bactérias/metabolismo , Petróleo/análise , Hidrocarbonetos/metabolismo , Poluentes do Solo/análise
12.
Behav Processes ; 216: 105014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461866

RESUMO

Dogs are used for oil detection to support spill remediation and conservation, but little is known about the effects of weathering and aging of oil odorants on dogs' ability to generalize and discriminate unweathered oil from aged/weathered tar ball oil. Three dogs were trained to detect unweathered oil odorant using a three-alternative choice procedure and automated olfactometers. We evaluated dogs' ability to discriminate unweathered target oil from four different weathered/tar ball samples. All three dogs successfully discriminated the unweathered target oil from the four nontarget weathered oils with an accuracy of 96%, 97%, and 100%. After the oil discrimination test, dogs' ability to discriminate unweathered target oil from novel natural odorants on a beach (plastic bottle lid, bird feathers, and rocks) was tested in a novel discrimination test yielding an accuracy of 95%, 100%, and 100%. These data suggest dogs are successful in discriminating unweathered oil from weathered oil with explicit training.


Assuntos
Óleos , Cães Trabalhadores , Animais , Cães , Odorantes , Tempo (Meteorologia)
13.
AAPS PharmSciTech ; 25(4): 67, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519767

RESUMO

Despite being discovered over five decades ago, little is still known about ivermectin. Ivermectin has several physico-chemical properties that can result in it having poor bioavailability. In this study, polymorphic and co-crystal screening was used to see if such solid-state modifications can improve the oil solubility of ivermectin. Span® 60, a lipophilic non-ionic surfactant, was chosen as co-former. The rationale behind attempting to improve oil solubility was to use ivermectin in future topical and transdermal preparations to treat a range of skin conditions like scabies and head lice. Physical mixtures were also prepared in the same molar ratios as the co-crystal candidates, to serve as controls. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The FTIR spectra of the co-crystal candidates showed the presence of Span® 60's alkyl chain peaks, which were absent in the spectra of the physical mixtures. Due to the absence of single-crystal X-ray data, co-crystal formation could not be confirmed, and therefore these co-crystal candidates were referred to as co-processed crystalline solids. Following characterization, the solid-state forms, physical mixtures and ivermectin raw material were dissolved in natural penetration enhancers, i.e., avocado oil (AVO) and evening primrose oil (EPO). The co-processed solids showed increased oil solubility by up to 169% compared to ivermectin raw material. The results suggest that co-processing of ivermectin with Span® 60 can be used to increase its oil solubility and can be useful in the development of oil-based drug formulations.


Assuntos
Ivermectina , Óleos , Solubilidade , Difração de Raios X , Composição de Medicamentos , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
14.
J Agric Food Chem ; 72(14): 8247-8256, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551065

RESUMO

The compound-specific determination of δ13C values [‰] by gas chromatography interfaced with isotope ratio mass spectrometry (GC-IRMS) is a powerful analytical method to indicate minute but relevant variations in the 13C/12C ratio of sample compounds. In this study, the δ13C values [‰] of individual sterols were measured in eleven different oils of C3, C4, and CAM plants (n = 33) by GC-IRMS. For this purpose, a suitable acetylation method was developed for sterols. Nine of the eleven phytosterols identified by GC with mass spectrometry (GC/MS) could be measured by GC-IRMS. The δ13C values [‰] of individual sterols and squalene of C3 plant oils were between 3‰ and >16‰ more negative (lighter in carbon) than in C4 and CAM oils. We also showed that the blending of C4 oils into C3 oils (exemplarily conducted with one olive and one corn oil) would be precisely determined by means of the δ13C value [‰] of ß-sitosterol.


Assuntos
Carbono , Fitosteróis , Isótopos de Carbono/análise , Esteróis , Plantas , Óleos
15.
Int J Biol Macromol ; 264(Pt 1): 130596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447823

RESUMO

This study introduces a novel approach to develop a multifunctional coating on cotton fabric, emphasizing the utilization of cotton fiber as a biological macromolecule, by integrating a TiO2@g-C3N4 layered structure to confer superhydrophobic properties and multiple functionalities. The engineered structure not only enhances fabric roughness but also incorporates non-fluoro hydrophobic agents, thereby imparting diverse capabilities such as photocatalysis, oil-water separation, and self-cleaning to the cotton substrate. Fabrication of the TiO2@g-C3N4 layered structure involved ultrasonic dispersion of TiO2 and g-C3N4, subsequently deposited onto cotton fabric. Sequential hydrophobic treatment with polydimethylsiloxane (PDMS) and isophorone diisocyanate (IPDI) achieved superhydrophobicity, exhibiting an exceptional water contact angle (WCA) of 157.9°. Comprehensive characterization via scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric validated the composite's structural and chemical properties. The introduced TiO2@g-C3N4 structure significantly enhanced fabric roughness, while PDMS treatment lowered surface energy and IPDI hydrolysis facilitated cross-linking, ensuring durability. The resultant TiO2@g-C3N4/PDMS cotton exhibited outstanding self-cleaning properties and demonstrated oil adsorption capacity, accommodating both heavy and light oils. Notably, this superhydrophobic cotton efficiently separated water-oil mixtures, achieving 96.8 % efficiency even after 10 cycles. Moreover, under simulated light, it displayed outstanding photocatalytic degradation (93.2 %) of methylene blue while maintaining a WCA of 150° post-degradation, highlighting sustained functionality. This innovation holds promise for sustainable applications, offering robust physical and chemical durability within the realm of biological macromolecules. The amalgamation of TiO2@g-C3N4 layered structure and PDMS treatment on cotton fabric underscores a sustainable approach to address water-oil separation challenges and enable efficient self-cleaning. This research demonstrates a significant step towards sustainable material applications and addresses pertinent real-world challenges in diverse technological domains.


Assuntos
Fibra de Algodão , Água , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Interações Hidrofóbicas e Hidrofílicas , Óleos
16.
Compr Rev Food Sci Food Saf ; 23(2): e13316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506169

RESUMO

Fats and oils are found in many food products; however, their macroscopic properties are difficult to predict, especially when blending different fats or oils together. With difficulties in sourcing specific fats or oils, whether due to availability or pricing, food companies may be required to find alternative sources for these ingredients, with possible differences in ingredient performance. Mathematical and computational modeling of these ingredients can provide a quick way to predict their properties, avoiding costly trials or manufacturing problems, while, most importantly, keeping the consumers happy. This review covers a range of mathematical models for triacylglycerides (TAGs) and fats, namely, models for the prediction of melting point, solid fat content, and crystallization temperature and composition. There are a number of models that have been designed for both TAGs and fats and which have been shown to agree very well with empirical measurements, using both kinetic and thermodynamic approaches, with models for TAGs being used to, in turn, predict fat properties. The last section describes computational models to simulate the behavior of TAGs using molecular dynamics (MD). Simulation of TAGs using MD, however, is still at an early stage, although the most recent papers on this topic are bringing this area up to speed.


Assuntos
Gorduras , Óleos , Gorduras/química , Cristalização , Temperatura , Simulação por Computador
17.
J Oleo Sci ; 73(2): 177-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311408

RESUMO

Moisturization causes physiological changes that improve the barrier function of human skin and mechanical changes, including skin friction characteristics. This study evaluated petrolatum- or silicone oil-treated human skin to determine the effect of moisturizing on the friction dynamics. The friction force on the human skin was measured using a contact probe with a sinusoidal motion. The contact probe was used to rub the skin of the upper arm of 20 subjects. The water content of the stratum corneum, softness, and barrier function of the skin were measured using a corneometer, cutometer, and tewameter, respectively. Both oils reduce the frictional force on the human skin. Simultaneously, silicone oil also reduced the delay time δ, which is the standardized time difference between the frictional force response to contact probe movement. Three typical friction patterns were also discovered, which were significantly changed by the treatment with oil. These changes were attributed to the lubrication effect and elimination of adhesion at the true contact point between the skin and the contact probe.


Assuntos
Óleos de Silicone , Pele , Humanos , Fricção , Óleos , Epiderme
18.
J Oleo Sci ; 73(2): 135-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311404

RESUMO

In the pursuit of reducing oil separation in peanut butter, oleogels synthesized from diacylglycerol (DAG)-rich peanut oils, using glycerol monostearate (GMS) as the gelator, were examined as alternative stabilizers. In comparison to triacylglycerol (TAG)-rich peanut oils, the DAG oil-based oleogels exhibited better oil-binding capacities across increasing GMS concentrations. Intriguingly, thermal and rheological assessments pointed to a weaker network structure in DAG oil oleogels, as evidenced by their lower crystallization temperatures and reduced viscoelastic parameters (G' and G''). Insight from infrared spectroscopy revealed that this could stem from heightened intermolecular hydrogen bonding between the DAG oil and the gelator. When applied to peanut butter, DAG oil oleogels demonstrated efficacy in minimizing oil separation. Extended storage trials affirmed the long-term stability of peanut butter formulations incorporating these oleogels. Furthermore, sensory evaluations by panelists underscored favorable impressions, suggesting potential consumer acceptance. Overall, this study illuminates the promising role of DAG oleogels as effective, alternative stabilizers in peanut butter formulations.


Assuntos
Arachis , Diglicerídeos , Óleos , Compostos Orgânicos/química
19.
Chem Biodivers ; 21(4): e202302124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409929

RESUMO

Ficus drupacea is a medicinal tree found in temperate regions. Various parts of this plant had been used traditionally for the treatment of various ailments such as root powder applied externally for skin infections. Analysis was carried out on the bioactive lipids extracted from Ficus drupacea fruit using both petroleum-based solvent (Hexane) and an environmentally friendly solvent Dimethyl carbonate (DMC). The results showed that DMC extraction yielded a high oil content in Ficus drupacea fruit (6.51 %). When examining the fatty acid composition using GC-FID analysis, Ficus drupacea oil extracted with DMC contained significant proportions of essential fatty acids such as linoleic acid (32.317 %), oleic acid (20.946 %), palmitic acid (25.841 %), etc. Additionally, DMC extraction resulted in higher levels of total phenolics in Ficus drupacea fruit oil compared to hexane. Moreover, DMC extracted oil exhibited stronger antioxidant properties, such as radical scavenging, anti- arthritic, photoprotective activity while displayed similar anti-inflammatory and anti-microbial activity as hexane-extracted oil. In summary, these findings demonstrate that DMC is an efficient and safer alternative to conventional solvent hexane for extracting oils from Ficus drupacea fruit. It is rich in bioactive compounds essential for human nutrition, including polyunsaturated fatty acids, flavonoids, and phenolic compounds, with enhanced biological activities.


Assuntos
Ficus , Humanos , Solventes , Hexanos , Lipidômica , Antioxidantes/farmacologia , Antioxidantes/análise , Óleos
20.
J Hazard Mater ; 468: 133867, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402683

RESUMO

Compared with conventional pyrolysis, microwave pyrolysis has superior heat transfer performance and promotes the decomposition of organic matter. The paper focuses on the harmless treatment and resource utilization of pharmaceutical sludge (PS) by microwave heating and conventional heating methods. The experimental results showed that the conventional pyrolysis gas is dominated by CO2, CO and H2. For microwave pyrolysis gas, the "microwave effect" promoted secondary cracking of volatile fractions and increases the content of CH4, CxHy, H2 and CO through condensation, aromatization, and dehydrogenation. Conventional pyrolysis oils contained the highest percentage of oxygenated compounds. However, high-temperature microwave radiation accelerated the cleavage of polar oxygenated molecular bonds and long-chain hydrocarbons, thereby increasing the aromatics content of pyrolysis oils. The solid residues obtained from microwave pyrolysis is highly graphitized and porous, with a surface area of 146.2 m2/g. Furthermore, the solid residue was rich in pyridine-N and pyrrole-N that could be utilized for adsorption and catalysis. The MA-600 removes up to 99% of tetracycline (TC) in 6 h. It was also found that the adsorption process of TC by the two pyrolysis residues was consistent with the proposed secondary and Freundlich models.


Assuntos
Micro-Ondas , Esgotos , Esgotos/química , Antibacterianos , Pirólise , Adsorção , Temperatura Alta , Óleos , Tetraciclina , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...