Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.613
Filtrar
1.
Undersea Hyperb Med ; 51(1): 7-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615348

RESUMO

Background: Hyperbaric oxygen (HBO2) therapy is an alternative method against the deleterious effects of ischemic/reperfusion (I/R) injury and its inflammatory response. This study assessed the effect of preoperative HBO2 on patients undergoing pancreaticoduodenectomy. Study Design: Patients were randomized via a computer-generated algorithm. Patients in the HBO2 cohort received two sessions of HBO2 the evening before and the morning of surgery. Measurements of inflammatory mediators and self-assessed pain scales were determined pre-and postoperatively. In addition, perioperative variables and long-term survival were collected and analyzed. Data are presented as median (mean ± SD). Results: 33 patients were included; 17 received preoperative HBO2, and 16 did not. There were no intraoperative or postoperative statistical differences between patients with or without preoperative HBO2. Erythrocyte sedimentation rate (ESR), IL-6, and IL-10 increased slightly before returning to normal, while TGF-alpha decreased before increasing. However, there were no differences with or without HBO2. At postoperative day 30, the pain level measured with VAS score (Visual Analog Score) was lower after HBO2 (1 ± 1.3 vs. 3 ± 3.0, p=0.05). Eleven (76%) patients in the HBO2 cohort and 12 (75%) patients in the non- HBO2 had malignant pathology. The percentage of positive lymph nodes in the HBO2 was 7% compared to 14% in the non-HBO2 (p<0.001). Overall survival was inferior after HBO2 compared to the non- HBO2 (p=0.03). Conclusions: Preoperative HBO2 did not affect perioperative outcomes or significantly change the inflammatory mediators for patients undergoing robotic pancreaticoduodenectomy. Long-term survival was inferior after preoperative HBO2. Further randomized controlled studies are required to assess the full impact of this treatment on patients' prognosis.


Assuntos
Oxigenoterapia Hiperbárica , Humanos , Pancreaticoduodenectomia/efeitos adversos , Oxigênio , Mediadores da Inflamação , Dor , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Immunity ; 57(4): 790-814, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599171

RESUMO

Activation of the innate immune system following pattern recognition receptor binding has emerged as one of the major pathogenic mechanisms in neurodegenerative disease. Experimental, epidemiological, pathological, and genetic evidence underscores the meaning of innate immune activation during the prodromal as well as clinical phases of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Importantly, innate immune activation and the subsequent release of inflammatory mediators contribute mechanistically to other hallmarks of neurodegenerative diseases such as aberrant proteostatis, pathological protein aggregation, cytoskeleton abnormalities, altered energy homeostasis, RNA and DNA defects, and synaptic and network disbalance and ultimately to the induction of neuronal cell death. In this review, we discuss common mechanisms of innate immune activation in neurodegeneration, with particular emphasis on the pattern recognition receptors (PRRs) and other receptors involved in the detection of damage-associated molecular patterns (DAMPs).


Assuntos
Doenças Neurodegenerativas , Humanos , Receptores de Reconhecimento de Padrão , Sistema Imunitário , Mediadores da Inflamação , Imunidade Inata
3.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612423

RESUMO

Periodontitis, characterized by persistent inflammation in the periodontium, is intricately connected to systemic diseases, including oral cancer. Bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, play a pivotal role in periodontitis development because they contribute to dysbiosis and tissue destruction. Thus, comprehending the interplay between these bacteria and their impacts on inflammation holds significant relevance in clinical understanding and treatment advancement. In the present work, we explored, for the first time, their impacts on the expressions of pro-inflammatory mediators after infecting oral keratinocytes (OKs) with a co-culture of pre-incubated P. gingivalis and F. nucleatum. Our results show that the co-culture increases IL-1ß, IL-8, and TNF-α expressions, synergistically augments IL-6, and translocates NF-kB to the cell nucleus. These changes in pro-inflammatory mediators-associated with chronic inflammation and cancer-correlate with an increase in cell migration following infection with the co-cultured bacteria or P. gingivalis alone. This effect depends on TLR4 because TLR4 knockdown notably impacts IL-6 expression and cell migration. Our study unveils, for the first time, crucial insights into the outcomes of their co-culture on virulence, unraveling the role of bacterial interactions in polymicrobial diseases and potential links to oral cancer.


Assuntos
Neoplasias Bucais , Periodontite , Humanos , Técnicas de Cocultura , Interleucina-6 , Receptor 4 Toll-Like , Inflamação , Mediadores da Inflamação , Queratinócitos
5.
Mol Vis ; 30: 167-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601015

RESUMO

Purpose: To examine whether increased ephrin type-B receptor 1 (EphB1) leads to inflammatory mediators in retinal Müller cells. Methods: Diabetic human and mouse retinal samples were examined for EphB1 protein levels. Rat Müller cells (rMC-1) were grown in culture and treated with EphB1 siRNA or ephrin B1-Fc to explore inflammatory mediators in cells grown in high glucose. An EphB1 overexpression adeno-associated virus (AAV) was used to increase EphB1 in Müller cells in vivo. Ischemia/reperfusion (I/R) was performed on mice treated with the EphB1 overexpression AAV to explore the actions of EphB1 on retinal neuronal changes in vivo. Results: EphB1 protein levels were increased in diabetic human and mouse retinal samples. Knockdown of EphB1 reduced inflammatory mediator levels in Müller cells grown in high glucose. Ephrin B1-Fc increased inflammatory proteins in rMC-1 cells grown in normal and high glucose. Treatment of mice with I/R caused retinal thinning and loss of cell numbers in the ganglion cell layer. This was increased in mice exposed to I/R and treated with the EphB1 overexpressing AAVs. Conclusions: EphB1 is increased in the retinas of diabetic humans and mice and in high glucose-treated Müller cells. This increase leads to inflammatory proteins. EphB1 also enhanced retinal damage in response to I/R. Taken together, inhibition of EphB1 may offer a new therapeutic option for diabetic retinopathy.


Assuntos
Retinopatia Diabética , Efrina-B1 , Doenças Retinianas , Animais , Humanos , Camundongos , Ratos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Efrina-B1/genética , Efrina-B1/metabolismo , Glucose/metabolismo , Mediadores da Inflamação/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo
6.
Sci Rep ; 14(1): 9070, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643262

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.


Assuntos
Metilaminas , Insuficiência Renal Crônica , Fator de Necrose Tumoral alfa , Humanos , Mediadores da Inflamação , Fibrose , Insuficiência Renal Crônica/metabolismo , Citocinas , Fibroblastos/metabolismo , Inflamação/metabolismo , Colágeno
7.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542876

RESUMO

Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway's inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation.


Assuntos
Lesão Pulmonar Aguda , Cebolinha-Francesa , Medicamentos de Ervas Chinesas , Saponinas , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Saponinas/farmacologia , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Células Endoteliais da Veia Umbilical Humana , Fator de Necrose Tumoral alfa/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Mediadores da Inflamação/metabolismo
8.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542895

RESUMO

The resolution of inflammation is the primary domain of specialised pro-resolving mediators (SPMs), which include resolvins, protectins, and their forms synthesised under the influence of aspirin and the maresins. The role of these SPMs has been discussed by many authors in the literature, with particular reference to neuroinflammation and significant neurological disorders. This review discusses the role of G protein-coupled receptor 18 (GPR18), resolvin D2 (RvD2) activity, and the GPR18-RvD2 signalling axis, as well as the role of small molecule ligands of GPR18 in inflammation in various health disorders (brain injuries, neuropathic pain, neurodegenerative/cardiometabolic/cardiovascular/gastrointestinal diseases, peritonitis, periodontitis, asthma and lung inflammation, Duchenne muscular dystrophy, SARS-CoV-2-induced inflammation, and placenta disorders. The idea of biological intervention through modulating GPR18 signalling is attracting growing attention because of its great therapeutic potential. With this paper, we aimed to present a comprehensive review of the most recent literature, perform a constructive view of data, and point out research gaps.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Gravidez , Feminino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Transdução de Sinais , SARS-CoV-2 , Mediadores da Inflamação , Receptores Acoplados a Proteínas G
10.
JCO Glob Oncol ; 10: e2300380, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547441

RESUMO

PURPOSE: Inflammatory mediators are important regulators of immune response and can modulate the inflammation caused by viral infections, including human papillomavirus (HPV). In this study, we evaluated the association between cervical immune mediators, including chemokines, cytokines, and growth factors with HPV infections. MATERIALS AND METHODS: We used a nonmagnetic bead-based multiplex assay to determine 27 immune mediators in cervical secretions collected from 275 women in a prospective longitudinal cohort design. All the study participants were age 18 years or older, had a history of vaginal sexual intercourse, were not currently pregnant, and had no history of cervical disease or hysterectomy. RESULTS: The mean (±standard deviation) age of the participants was 41 (±8) years, and about half (51% [141/275]) were HPV-positive, of whom 7% (10/141) had low-risk HPV (lrHPV), 61% (86/141) had high-risk HPV (hrHPV), and 32% (45/141) had both lrHPV and hrHPV infections. Higher concentrations of some immune mediators were associated with HPV infections, including eotaxin, interferon-gamma, interleukin (IL)-1ß, IL-2, IL-4, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, macrophage inflammatory protein (MIP)-1α, MIP-1ß, regulated upon activation normal T-cell expressed and secreted (RANTES), and tumor necrosis factor (TNF)-α and any HPV; IL-2, IL-4, IL-5, IL-7, IL-10, IL-12p70, and IL-13 and lrHPV; and eotaxin, interferon, IL-1B, IL-4, IL-7, IL-8, IL-9, IL-10, IL-13, IL-15, MIP-1α, MIP-1ß, RANTES, TNF-α concentrations, and hrHPV infections. Higher concentrations of granulocyte macrophage colony-stimulating factor, IL-1 receptor antagonist (IL-1Ra), and monocyte chemotactic protein-1 (MCP-1) were associated with reduced odds of any HPV, while IL-1Ra and MCP-1 were associated with reduced odds of hrHPV infections. CONCLUSION: Several chemokines, cytokines, and growth factors are associated with group-specific HPV infections in this population of women. These important findings contribute to the understanding of the immune response to HPV, cytokine profiles and their potential implications for cervical pathogenesis, and can guide future research in this field.


Assuntos
Interleucina-10 , Infecções por Papillomavirus , Humanos , Feminino , Gravidez , Adolescente , Adulto , Pessoa de Meia-Idade , Quimiocina CCL4 , Interleucina-15 , Interleucina-2 , Mediadores da Inflamação , Interleucina-13 , Estudos Prospectivos , Interleucina-4 , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-7 , Interleucina-8 , Interleucina-9 , Citocinas/metabolismo
11.
Exp Clin Transplant ; 22(2): 137-147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38511984

RESUMO

OBJECTIVES: Vascularized composite allotransplantation is a reconstructive option after severe injury but is fraught with complications, including transplant rejection due to major histocompatibility complex mismatch in the context of allogeneic transplant, which in turn is due to altered immuno-inflammation secondary to transplant. The immunosuppressant tacrolimus can prevent rejection. Because tacrolimus is metabolized predominantly by the gut, this immunosuppressant alters the gut microbiome in multiple ways, thereby possibly affecting immunoinflammation. MATERIALS AND METHODS: We performed either allogeneic or syngeneic transplant with or without tacrolimus in rats. We quantified protein-level inflammatory mediators in the skin, muscle, and plasma and assessed the diversity of the gut microbiome through 16S RNA analysis at several timepoints over 31 days posttransplant. RESULTS: Statistical analysis highlighted a complex interaction between major histocompatibility complex and tacrolimus therapy on the relative diversity of the microbiome. Time-interval principal component analysis indicated numerous significant differences in the tissue characteristics of inflammation and gut microbiome that varied over time and across experimental conditions. Classification and regression tree analysis suggested that both inflammatory mediators in specific tissues and changes in the gut microbiome are useful in characterizing the temporal dynamics of posttransplant inflammation. Dynamic network analysis highlighted unique changes in Methanosphaera that were correlated with Peptococcusin allogeneic transplants with and without tacrolimus versus Prevotella in syngeneic transplant with tacrolimus, suggesting that alterations in Methanosphaera might be a biomarker of vascularized composite allotransplant rejection. CONCLUSIONS: Our results suggest a complex interaction among major histocompatibility complex, local and systemic immuno-inflammation, and tacrolimus therapy and highlight the potential for novel insights into vascularized composite allotransplant from computational approaches.


Assuntos
Microbioma Gastrointestinal , Alotransplante de Tecidos Compostos Vascularizados , Ratos , Animais , Tacrolimo , Imunossupressores , Alotransplante de Tecidos Compostos Vascularizados/efeitos adversos , Alotransplante de Tecidos Compostos Vascularizados/métodos , Rejeição de Enxerto/prevenção & controle , Inflamação , Mediadores da Inflamação
12.
J Agric Food Chem ; 72(12): 6389-6401, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494644

RESUMO

Prolonged inflammation leads to the genesis of various inflammatory diseases such as atherosclerosis, cancer, inflammatory bowel disease, Alzheimer's, etc. The uncontrolled inflammatory response is characterized by the excessive release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1alpha (IL-1α), and inflammatory enzymes such as cyclooxygenase-2 (COX-2). Hence, the downregulation of these inflammatory mediators is an active therapy to control aberrant inflammation and tissue damage. To address this, herein, we present the rational design and synthesis of novel phytochemical entities (NPCEs) through strategic linker-based molecular hybridization of aromatic/heteroaromatic fragments with the labdane dialdehyde, isolated from the medicinally and nutritionally significant rhizomes of the plant Curcuma amada. To validate the anti-inflammatory potential, we employed a comprehensive in vitro study assessing its inhibitory effect on the COX-2 enzyme and other inflammatory mediators, viz., NO, TNF-α, IL-6, and IL-1α, in bacterial lipopolysaccharide-stimulated macrophages, as well as in-silico molecular modeling studies targeting the inflammation regulator COX-2 enzyme. Among the synthesized novel compounds, 5f exhibited the highest anti-inflammatory potential by inhibiting the COX-2 enzyme (IC50 = 17.67 ± 0.89 µM), with a 4-fold increased activity relative to the standard drug indomethacin (IC50 = 67.16 ± 0.17 µM). 5f also significantly reduced the levels of LPS-induced NO, TNF-α, IL-6, and IL-1α, much better than the positive control. Molecular mechanistic studies revealed that 5f suppressed the expression of COX-2 and pro-inflammatory cytokine release dose-dependently, which was associated with the inhibition of the NF-κB signaling pathway. This infers that the labdane derivative 5f is a promising lead candidate as an anti-inflammatory agent to further explore its therapeutic landscape.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Humanos , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Óxido Nítrico/metabolismo
13.
Pharmacol Res ; 202: 107113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387744

RESUMO

Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.


Assuntos
Anti-Inflamatórios , Sepse , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/complicações , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Eicosanoides , Mediadores da Inflamação , Sepse/tratamento farmacológico , Sepse/complicações
14.
Trends Mol Med ; 30(3): 239-251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320941

RESUMO

The intestinal epithelium fulfills important physiological functions and forms a physical barrier to the intestinal lumen. Barrier function is regulated by several pathways, and its impairment contributes to the pathogenesis of inflammatory bowel disease (IBD), a chronic inflammatory condition affecting more than seven million people worldwide. Current treatment options specifically target inflammatory mediators and have led to improvement of clinical outcomes; however, a significant proportion of patients experience treatment failure. Pro-repair effects of inflammatory mediators on the epithelium are emerging. In this review we summarize current knowledge on involved epithelial pathways, identify open questions, and put recent findings into clinical perspective, and pro-repair effects. A detailed understanding of epithelial pathways integrating mucosal stimuli in homeostasis and inflammation is crucial for the development of novel, more targeted therapies.


Assuntos
Inflamação , Doenças Inflamatórias Intestinais , Humanos , Inflamação/patologia , Intestinos , Mucosa Intestinal , Homeostase , Mediadores da Inflamação/metabolismo , Fenótipo
15.
Int J Biol Macromol ; 261(Pt 2): 129874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307430

RESUMO

Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1ß, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carragenina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Citocinas/metabolismo , Superóxido Dismutase/farmacologia , Cicatrização , Edema/induzido quimicamente , Edema/tratamento farmacológico , Mediadores da Inflamação/farmacologia
16.
Acta Cir Bras ; 39: e390924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324802

RESUMO

PURPOSE: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. METHODS: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. RESULTS: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. CONCLUSIONS: Sinomenine is a beneficial active agent for the treatment of OA disease.


Assuntos
Cartilagem Articular , Morfinanos , Osteoartrite , Ratos , Animais , Ácido Iodoacético/metabolismo , Ácido Iodoacético/farmacologia , Osteoartrite/metabolismo , Agrecanas/metabolismo , Agrecanas/farmacologia , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Metaloproteinases da Matriz/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peso Corporal
17.
Inhal Toxicol ; 36(2): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422051

RESUMO

Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.


Assuntos
Pneumopatias , Nanopartículas Metálicas , Humanos , Exposição por Inalação/efeitos adversos , Prata , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Ceramidas , Mediadores da Inflamação/metabolismo
18.
Inflammopharmacology ; 32(2): 1187-1201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367124

RESUMO

Atriplex crassifolia (A. crassifolia) is a locally occurring member of Chenopodiaceae family that has been used in folk medicine for the treatment of joint pain and inflammation. The present study was focused to determine the analgesic and anti-inflammatory potential of the plant. n-hexane (ACNH) and methanol (ACM) extracts of A. crassifolia were evaluated for in vitro anti-inflammatory potential using protein denaturation inhibition assay. In vivo anti-inflammatory potential was determined by oral administration of 250, 500, and 1000 mg/kg/day of extracts against carrageenan and formalin-induced paw edema models. Inflammatory mediators such as TNF-α, IL-10, IL-1ß, NF-kB, IL-4, and IL-6 were estimated in blood samples of animals subjected to formalin model of inflammation. Analgesic activity was determined using acetic acid-induced writhing and tail flick assay model. Phytochemical profiling was done by GC-mass spectrophotometer. The results of in vitro anti-inflammatory activity revealed that both ACNH and ACM displayed eminent inhibition of protein denaturation in concentration-dependent manner. In acute in vivo carrageenan-induced paw edema model, both extracts reduced inflammation at 5th and 6th hour of study (p < 0.05). A. crassifolia extracts exhibited significant inhibition against formalin-induced inflammation with maximum effect at 1000 mg/kg. ACNH and ACM significantly augmented the inflammatory mediators (p < 0.05). Levels of TNF-α, IL-6, IL-1ß, and NF-kB were reduced, while those of IL-4 and IL-10 were upregulated. ACNH displayed maximum analgesic effect at 1000 mg/kg, while ACM showed potent activity at 500 and 1000 mg/kg. The extracts restored the CBC, TLC and CRP toward normal. GC-MS analysis revealed the presence of compounds like n-hexadecanoic acid, Phytol, (9E,11E)-octadecadienoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, 1-hexacosene, vitamin E, campesterol, stigmasterol, gamma sitosterol in both extracts. These compounds have been reported to suppress inflammation by inhibiting inflammatory cytokines. The current study concludes that A. crassifolia possesses significant anti-nociceptive and anti-inflammatory potential owing to the presence of phytochemicals.


Assuntos
Atriplex , Interleucina-10 , Animais , Carragenina , Atriplex/metabolismo , Extratos Vegetais , Cromatografia Gasosa-Espectrometria de Massas , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-4 , Interleucina-6 , Anti-Inflamatórios , Analgésicos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Dor/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Formaldeído , Mediadores da Inflamação/metabolismo
19.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407207

RESUMO

BACKGROUND: Ductular reactivity is central to the pathophysiology of cholangiopathies. Mechanisms underlying the reactive phenotype activation by exogenous inflammatory mediators and bile acids are poorly understood. METHODS: Using human extrahepatic cholangiocyte organoids (ECOs) we developed an injury model emulating the cholestatic microenvironment with exposure to inflammatory mediators and various pathogenic bile acids. Moreover, we explored roles for the bile acid activated Sphingosine-1-phosphate receptor 2 (S1PR2) and potential beneficial effects of therapeutic bile acids UDCA and norUDCA. RESULTS: Synergistic exposure to bile acids (taurocholic acid, glycocholic acid, glycochenodeoxycholic acid) and TNF-α for 24 hours induced a reactive state as measured by ECO diameter, proliferation, lactate dehydrogenase activity and reactive phenotype markers. While NorUDCA and UDCA treatments given 8 hours after injury induction both suppressed reactive phenotype activation and most injury parameters, proliferation was improved by NorUDCA only. Extrahepatic cholangiocyte organoid stimulation with S1PR2 agonist sphingosine-1-phosphate reproduced the cholangiocyte reactive state and upregulated S1PR2 downstream mediators; these effects were suppressed by S1PR2 antagonist JET-013 (JET), downstream mediator extracellular signal-regulated kinase 1/2 inhibitor, and by norUDCA or UDCA treatments. JET also partially suppressed reactive phenotype after bile acid injury. CONCLUSIONS: We developed a novel model to study the reactive cholangiocyte state in response to pathological stimuli in cholestasis and demonstrated a contributory role of S1PR2 signaling in both injury and NorUDCA/UDCA treatments. This model is a valuable tool to further explore the pathophysiology of human cholangiopathies.


Assuntos
Ácidos e Sais Biliares , Colestase , Humanos , Mediadores da Inflamação , Fenótipo , Transdução de Sinais
20.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323434

RESUMO

Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1ß, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.


Assuntos
Infecções por Alphavirus , Artrite , Vírus Chikungunya , Periodontite , Humanos , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/patologia , Vírus Chikungunya/fisiologia , Mediadores da Inflamação/uso terapêutico , Ligantes , Vírus do Rio Ross/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...