Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.824
Filtrar
1.
Drug Des Devel Ther ; 18: 1133-1141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618281

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the world's principal metabolic diseases characterized by chronic hyperglycemia. The gut incretin hormones, glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), which has been proposed as a new treatment for T2DM, are extensively metabolized by Dipeptidyl peptidase 4 (DPP-4). Inhibitors of DPP-4 block the degradation of GLP-1 and GIP and may increase their natural circulating levels, favoring glycemic control in T2DM. A novel and potent selective inhibitor of DPP-4 with an 8-purine derived structure (1) has been developed and tested in vitro and in vivo in Zücker obese diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome and T2DM to assess the inhibitory activity using vildagliptin as reference standard. ZDF rats were subdivided into three groups (n = 7/group), control (C-ZDF), and those treated with compound 1 (Compound1-ZDF) and with vildagliptin (V-ZDF), both at 10 mg/kg/d rat body weight, in their drinking water for 12 weeks, and a group of lean littermates (ZL) was used. ZDF rats developed DM (fasting hyperglycemia, 425 ± 14.8 mg/dL; chronic hyperglycemia, HbA1c 8.5 ± 0.4%), compared to ZL rats. Compound 1 and vildagliptin reduced sustained HbAl1c (14% and 10.6%, P < 0.05, respectively) and fasting hyperglycemia values (24% and 19%, P < 0.05, respectively) compared to C-ZDF group (P < 0.001). Compound 1 and vildagliptin have shown a potent activity with an IC50 value of 4.92 and 3.21 µM, respectively. These data demonstrate that oral compound 1 administration improves diabetes in ZDF rats by the inhibitory effect on DPP-4, and the potential to be a novel, efficient and tolerable approach for treating diabetes of obesity-related T2DM, in ZDF rats.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hiperglicemia , Animais , Ratos , Antivirais , Broncodilatadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Inibidores de Proteases , Ratos Zucker , Vasodilatadores , Vildagliptina/farmacologia , Vildagliptina/uso terapêutico
2.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611800

RESUMO

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Assuntos
Álcoois , Chlamydia trachomatis , Inibidores de Proteases , Inibidores de Proteases/farmacologia , Terapia Enzimática , Isocumarinas , Serina Endopeptidases , Serina Proteases
3.
Artigo em Inglês | MEDLINE | ID: mdl-38608142

RESUMO

Protease is the enzyme accountable for the breakdown of proteins i.e., proteolysis. Proteases are reportedly involved in the events of growth, development, progression and metastasis of cancers. If any agent could inhibit/retard the protease enzyme, i.e., protease inhibitor, it would arrest the cancer; thus indicating the significance of exploring protease inhibitors for latest anti-malignant drug discovery. Higher plants are the rich sources of different protease inhibitors that are effective against several types of malignancies both at preclinical and clinical stages. Natural protease inhibitors of herbal origin have both cancer chemopreventive and chemotherapeutic properties together with inhibitory activity against different types of pertinent proteases. Clinically, these herbal agents are found to be safe unlike the synthetic antineoplastic agents. Further studies in this direction are necessary in pursuit of newer generation drugs without adverse reactions for the prevention and treatment of malignancies.


Assuntos
Neoplasias , Inibidores de Proteases , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Peptídeo Hidrolases , Antivirais
4.
PLoS One ; 19(4): e0298201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626042

RESUMO

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Assuntos
Alcaloides , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/química
5.
J Med Virol ; 96(3): e29512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483056

RESUMO

Coronaviruses (CoVs) have continuously posed a threat to human and animal health. However, existing antiviral drugs are still insufficient in overcoming the challenges caused by multiple strains of CoVs. And methods for developing multi-target drugs are limited in terms of exploring drug targets with similar functions or structures. In this study, four rounds of structural design and modification on salinomycin were performed for novel antiviral compounds. It was based on the strategy of similar topological structure binding properties of protein targets (STSBPT), resulting in the high-efficient synthesis of the optimal compound M1, which could bind to aminopeptidase N and 3C-like protease from hosts and viruses, respectively, and exhibit a broad-spectrum antiviral effect against severe acute respiratory syndrome CoV 2 pseudovirus, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, feline infectious peritonitis virus and mouse hepatitis virus. Furthermore, the drug-binding domains of these proteins were found to be structurally similar based on the STSBPT strategy. The compounds screened and designed based on this region were expected to have broad-spectrum and strong antiviral activities. The STSBPT strategy is expected to be a fundamental tool in accelerating the discovery of multiple targets with similar effects and drugs.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Gatos , Camundongos , Suínos , Humanos , Antivirais/química , Infecções por Coronavirus/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
6.
Protein Sci ; 33(4): e4916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501598

RESUMO

Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Vacinas , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Precursores Enzimáticos/genética , Ribonucleases , Pandemias , Proteínas não Estruturais Virais/química , Inibidores de Proteases/química , Antivirais/química
7.
J Med Virol ; 96(3): e29498, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436148

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , SARS-CoV-2 , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
8.
Hematology ; 29(1): 2331389, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38511642

RESUMO

OBJECTIVE: Plant homeodomain finger protein 19 (PHF19) regulates hematopoietic stem cell differentiation and promotes multiple myeloma (MM) progression. This study intended to explore the potency of PHF19 at baseline and post induction treatment in estimating treatment response to protease inhibitors and survival in MM patients. METHODS: This retrospective study screened 69 MM patients who received protease inhibitors with bone marrow (BM) samples available at both baseline and post induction treatment. Twenty healthy BM donors were included as healthy controls (HCs). PHF19 in plasma cells from BM was quantified by reverse transcription-quantitative polymerase chain reaction. RESULTS: PHF19 at baseline and post induction treatment in MM patients were increased than in HCs. In MM patients, PHF19 was declined post induction treatment. Elevated PHF19 at baseline and post induction treatment were correlated with renal impairment, beta-2-microglobulin ≥5.5 mg/L, t (4; 14), higher international staging system (ISS) stage, and higher revised ISS (R-ISS) stage. Concerning treatment response, PHF19 at baseline and post induction treatment were negatively associated with complete response and overall response rate. Notably, abnormal PHF19 (above 95% quantile value of PHF19 in HCs) at baseline and post induction treatment were linked with shortened event-free survival (EFS) and overall survival (OS). After adjustment, abnormal PHF19 post induction treatment was independently related to shortened EFS (hazard ratio = 2.474) and OS (hazard ratio = 3.124). CONCLUSION: PHF19 is aberrantly high and declines post induction therapy, which simultaneously reflects unfavorable treatment response to protease inhibitors as well as shorter EFS and OS in MM patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Intervalo Livre de Progressão , Estudos Retrospectivos , Inibidores de Proteases , Prognóstico , Proteínas de Ligação a DNA , Fatores de Transcrição
9.
PLoS One ; 19(3): e0299301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517870

RESUMO

BACKGROUND: The COVID-19 pandemic began in 2019 as a result of the advent of a novel coronavirus, SARS-CoV-2. At present, there are a limited number of approved antiviral agents for the treatment of COVID-19. Remdesivir, Molnupiravir, and Paxlovid have been approved by the FDA to treat COVID-19 infections. Research has shown that the main protease enzyme (Mpro) of SARS-CoV-2 plays a crucial role in the enzymatic processing of viral polyproteins. This makes Mpro an interesting therapeutic target for combating infections caused by emerging coronaviruses. METHODS: The pharmacological effects of pyrroles and their derivatives have a wide range of applications. In our study, we focused on synthesizing nine novel derivatives of 2-arylamino-dihydro-indeno[1,2-b] pyrrol-4(1H)-one, with a particular emphasis on their antiviral properties. Using in silico studies involving molecular docking and DFT analyses in the gas phase using the B3LYP/6-31++G(d,p) basis set, we studied these compounds with respect to their interactions with the Mpro of SARS-CoV-2. The results of the docking analysis revealed that the synthesized compounds exhibited favorable inhibitory effects. Notably, compound 5f demonstrated the highest effectiveness against the target protein. Furthermore, the pharmacokinetic and drug-like properties of the synthesized derivatives of 2-arylamino-dihydroindeno[1,2-b] pyrrol-4(1H)-one indicated their potential as promising candidates for further development as inhibitors targeting SARS-CoV-2. However, it is imperative to determine the in vitro efficacy of these compounds through comprehensive biochemical and structural analyses.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Pandemias , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
10.
Biosystems ; 238: 105194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513884

RESUMO

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.


Assuntos
Laccaria , Micorrizas , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Papaína/metabolismo , Pepsina A/metabolismo , Ácido Aspártico/metabolismo , Cisteína/metabolismo , Simulação de Acoplamento Molecular , Simbiose , Inibidores de Proteases/metabolismo
11.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546211

RESUMO

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Assuntos
Doenças Transmissíveis , Vírus da Dengue , Dengue , Piperidinas , Viroses , Animais , Camundongos , Vírus da Dengue/fisiologia , Camundongos Endogâmicos ICR , Endopeptidases/farmacologia , Dengue/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química
12.
Expert Opin Ther Pat ; 34(1-2): 17-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445468

RESUMO

INTRODUCTION: Cysteine proteases are involved in a broad range of biological functions, ranging from extracellular matrix turnover to immunity. Playing an important role in the onset and progression of several diseases, including cancer, immune-related and neurodegenerative disease, viral and parasitic infections, cysteine proteases represent an attractive drug target for the development of therapeutic tools. AREAS COVERED: Recent scientific and patent literature focusing on the design and study of cysteine protease inhibitors with potential therapeutic application has been reviewed. EXPERT OPINION: The discovery of a number of effective structurally diverse cysteine protease inhibitors opened up new challenges and opportunities for the development of therapeutic tools. Mechanistic studies and the availability of X-ray crystal structures of some proteases, alone and in complex with inhibitors, provide crucial information for the rational design and development of efficient and selective cysteine protease inhibitors as preclinical candidates for the treatment of different diseases.


Assuntos
Cisteína Proteases , Doenças Neurodegenerativas , Humanos , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/química , Patentes como Assunto , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
13.
Chem Biodivers ; 21(4): e202301786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466126

RESUMO

SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 µg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 µg/ml), and Arabincoside B (IC50=53.31 µg/ml).


Assuntos
Apocynaceae , COVID-19 , Proteases 3C de Coronavírus , Animais , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Apocynaceae/química , Antivirais/farmacologia , Antivirais/química , Glicosídeos/farmacologia , Glicosídeos/química , Pregnanos/farmacologia , Pregnanos/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Dinâmica Molecular
14.
Front Immunol ; 15: 1344878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444844

RESUMO

Protease inhibitors regulate various biological processes and prevent host tissue/organ damage. Specific inhibition/regulation of proteases is clinically valuable for treating several diseases. Psoriasis affects the skin in the limbs and scalp of the body, and the contribution of cysteine and serine proteases to the development of skin inflammation is well documented. Cysteine protease inhibitors from ticks have high specificity, selectivity, and affinity to their target proteases and are efficient immunomodulators. However, their potential therapeutic effect on psoriasis pathogenesis remains to be determined. Therefore, we tested four tick cystatins (Sialostatin L, Sialostatin L2, Iristatin, and Mialostatin) in the recently developed, innate immunity-dependent mannan-induced psoriasis model. We explored the effects of protease inhibitors on clinical symptoms and histological features. In addition, the number and percentage of immune cells (dendritic cells, neutrophils, macrophages, and γδT cells) by flow cytometry, immunofluorescence/immunohistochemistry and, the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-22, IL-23, and IL-17 family) by qPCR were analyzed using skin, spleen, and lymph node samples. Tick protease inhibitors have significantly decreased psoriasis symptoms and disease manifestations but had differential effects on inflammatory responses and immune cell populations, suggesting different modes of action of these inhibitors on psoriasis-like inflammation. Thus, our study demonstrates, for the first time, the usefulness of tick-derived protease inhibitors for treating skin inflammation in patients.


Assuntos
Dermatite , Psoríase , Humanos , Inibidores de Cisteína Proteinase , Mananas , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Inflamação/tratamento farmacológico , Inibidores de Proteases , Imunidade Inata , Endopeptidases , Peptídeo Hidrolases
15.
J Org Chem ; 89(7): 4932-4946, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38451837

RESUMO

The concise synthesis of a small library of fluorinated piperidines from readily available dihydropyridinone derivatives has been described. The effect of the fluorination on different positions has then been evaluated by chemoinformatic tools. In particular, the compounds' pKa's have been calculated, revealing that the fluorine atoms notably lowered their basicity, which is correlated to the affinity for hERG channels resulting in cardiac toxicity. The "lead-likeness" and three-dimensionality have also been evaluated to assess their ability as useful fragments for drug design. A random screening on a panel of representative proteolytic enzymes was then carried out and revealed that one scaffold is recognized by the catalytic pocket of 3CLPro (main protease of SARS-CoV-2 coronavirus).


Assuntos
Quimioinformática , Descoberta de Drogas , SARS-CoV-2 , Desenho de Fármacos , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
16.
Eur J Med Chem ; 268: 116263, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432056

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and related variants, are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 main protease (Mpro) plays a central role in the replication of the virus and represents an attractive drug target. Herein, we report the discovery of novel SARS-CoV-2 Mpro covalent inhibitors, including highly effective compound NIP-22c which displays high potency against several key variants and clinically relevant nirmatrelvir Mpro E166V mutants.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Cisteína Endopeptidases , Antivirais/farmacologia
17.
Bioorg Med Chem ; 103: 117577, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518735

RESUMO

Small-molecule antivirals that prevent the replication of the SARS-CoV-2 virus by blocking the enzymatic activity of its main protease (Mpro) are and will be a tenet of pandemic preparedness. However, the peptidic nature of such compounds often precludes the design of compounds within favorable physical property ranges, limiting cellular activity. Here we describe the discovery of peptide aldehyde Mpro inhibitors with potent enzymatic and cellular antiviral activity. This structure-activity relationship (SAR) exploration was guided by the use of calculated hydration site thermodynamic maps (WaterMap) to drive potency via displacement of waters from high-energy sites. Thousands of diverse compounds were designed to target these high-energy hydration sites and then prioritized for synthesis by physics- and structure-based Free-Energy Perturbation (FEP+) simulations, which accurately predicted biochemical potencies. This approach ultimately led to the rapid discovery of lead compounds with unique SAR that exhibited potent enzymatic and cellular activity with excellent pan-coronavirus coverage.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , Peptídeos/farmacologia , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
18.
Bioorg Med Chem Lett ; 103: 129706, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508325

RESUMO

Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 µM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.


Assuntos
Antivirais , Urocordados , Animais , Chlorocebus aethiops , Humanos , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Células Vero
19.
Nat Commun ; 15(1): 2108, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453923

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has evoked a worldwide pandemic. As the emergence of variants has hampered the neutralization capacity of currently available vaccines, developing effective antiviral therapeutics against SARS-CoV-2 and its variants becomes a significant challenge. The main protease (Mpro) of SARS-CoV-2 has received increased attention as an attractive pharmaceutical target because of its pivotal role in viral replication and proliferation. Here, we generated a de novo Mpro-inhibitor screening platform to evaluate the efficacies of Mpro inhibitors based on Mpro cleavage site-embedded amyloid peptide (MCAP)-coated gold nanoparticles (MCAP-AuNPs). We fabricated MCAPs comprising an amyloid-forming sequence and Mpro-cleavage sequence, mimicking in vivo viral replication process mediated by Mpro. By measuring the proteolytic activity of Mpro and the inhibitory efficacies of various drugs, we confirmed that the MCAP-AuNP-based platform was suitable for rapid screening potential of Mpro inhibitors. These results demonstrated that our MCAP-AuNP-based platform has great potential for discovering Mpro inhibitors and may accelerate the development of therapeutics against COVID-19.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais , Peptídeos , Peptídeo Hidrolases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
20.
Int J Biol Macromol ; 265(Pt 1): 130644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462102

RESUMO

The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.


Assuntos
Aminoquinolinas , Compostos de Anilina , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...