Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.643
Filtrar
1.
Top Curr Chem (Cham) ; 382(2): 12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589598

RESUMO

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.


Assuntos
Iodo , Isoindóis , Compostos Organosselênicos , Selênio , Iodo/química , Indicadores e Reagentes , Compostos Organosselênicos/química , Lactonas/química , Carbono
2.
J Clin Microbiol ; 62(4): e0004524, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477535

RESUMO

Pneumocystis jirovecii pneumonia (PJP) is a serious and sometimes fatal infection occurring in immunocompromised individuals. High-risk patients include those with low CD4 counts due to human immunodeficiency virus infection and transplant recipients. The incidence of PJP is increasing, and rapid detection of PJP is needed to effectively target treatment and improve patient outcomes. A common method used is an immunofluorescent assay (IFA), which has limitations, including labor costs, low sensitivity, and requirement for expert interpretation. This study evaluates the performance of the DiaSorin Molecular Pneumocystis jirovecii analyte-specific reagent (ASR) in a laboratory-developed test (LDT) for the direct detection of P. jirovecii DNA without prior nucleic acid extraction. Respiratory samples (n = 135) previously tested by IFA from 111 patients were included. Using a composite standard of in-house IFA and reference lab PJP PCR, the percent positive agreement for the LDT using the DiaSorin ASR was 97.8% (90/92). The negative percent agreement was 97.7% (42/43). The lower limit of detection of the assay was determined to be 1,200 copies/mL in bronchoalveolar lavage fluid. Analytical specificity was assessed using cultures of oropharyngeal flora and common respiratory bacterial and fungal pathogens. No cross-reactivity was observed. Our study suggests that the DiaSorin Pneumocystis ASR accurately detects P. jirovecii DNA and demonstrates improved sensitivity compared to the IFA method. IMPORTANCE: Our study is unique compared to other previously published studies on the DiaSorin analyte-specific reagent (ASR) because we focused on microbiological diagnostic methods commonly used (immunofluorescent assay) as opposed to pathology findings or reference PCR. In addition, in our materials and methods, we describe the protocol for the use of the DiaSorin ASR as a singleplex assay, which will allow other users to evaluate the ASR for clinical use in their lab.


Assuntos
Pneumocystis carinii , Pneumonia por Pneumocystis , Humanos , Pneumocystis carinii/genética , Indicadores e Reagentes , Sensibilidade e Especificidade , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Hospedeiro Imunocomprometido , DNA
3.
Talanta ; 273: 125813, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461642

RESUMO

One of the most used methods to measure antioxidant capacity in food is the ferric reducing antioxidant power (FRAP) test, which is simple, sensitive, and economical, nevertheless has long analysis times, causing measurement errors due to the instability of the FRAP reagent due to its precipitation sequential injection analysis (SIA) is a flow technique that can correct these disadvantages because it is more quickly. So, a novel FRAP-SIA method was developed to evaluate the antioxidant capacity. The system was optimized using a central composite design for hydrodynamic and chemical factors, resulting in a flow rate of 35 µL s-1, and aspirate volumes of 33 µL-38 µL-33 µL for the sequence (FRAP-Antioxidant-FRAP). FRAP reagent was prepared with an HCl solution at 0.005 mol L-1, improving its stability 24 times, concerning when it is in acetate buffer at pH 3.6. The method showed excellent accuracy (RSD <3%) with a LOD of 1.0 µmol L-1 of Trolox for a linear range of 5-120 µmol L-1. The reaction time was diminished by 96% concerning the FRAP-microplate assay (from 30 min to 1.2 min). The method was applied in beverages and extracts, obtaining recovery values ranging from 91.24 to 114.22%.


Assuntos
Antioxidantes , Alimentos , Antioxidantes/análise , Oxirredução , Indicadores e Reagentes , Ferro
4.
Nat Comput Sci ; 4(3): 224-236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532137

RESUMO

Here we used machine learning to engineer genetically encoded fluorescent indicators, protein-based sensors critical for real-time monitoring of biological activity. We used machine learning to predict the outcomes of sensor mutagenesis by analyzing established libraries that link sensor sequences to functions. Using the GCaMP calcium indicator as a scaffold, we developed an ensemble of three regression models trained on experimentally derived GCaMP mutation libraries. The trained ensemble performed an in silico functional screen on 1,423 novel, uncharacterized GCaMP variants. As a result, we identified the ensemble-derived GCaMP (eGCaMP) variants, eGCaMP and eGCaMP+, which achieve both faster kinetics and larger ∆F/F0 responses upon stimulation than previously published fast variants. Furthermore, we identified a combinatorial mutation with extraordinary dynamic range, eGCaMP2+, which outperforms the tested sixth-, seventh- and eighth-generation GCaMPs. These findings demonstrate the value of machine learning as a tool to facilitate the efficient engineering of proteins for desired biophysical characteristics.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Corantes , Indicadores e Reagentes , Aprendizado de Máquina
5.
Nature ; 627(8004): 680-687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448587

RESUMO

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Assuntos
Cátions , Ciclização , Indicadores e Reagentes , Proteínas , Triptofano , Cátions/química , Indicadores e Reagentes/química , Oxirredução , Proteoma/química , Triptofano/química , Peptídeos/química , Química Click , Proteínas/química
6.
Bioconjug Chem ; 35(3): 286-299, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451202

RESUMO

Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.


Assuntos
Lisina , Muramidase , Lisina/química , Indicadores e Reagentes , Peptídeos/química , Aminas , Azidas/química , Química Click , Alcinos/química
7.
Acc Chem Res ; 57(6): 855-869, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452397

RESUMO

ConspectusSince the pioneering work of Curtius and Fischer, chemical peptide synthesis has witnessed a century's development and evolved into a routine technology. However, it is far from perfect. In particular, it is challenged by sustainable development because the state-of-the-art of peptide synthesis heavily relies on legacy reagents and technologies developed before the establishment of green chemistry. Over the past three decades, a broad range of efforts have been made for greening peptide synthesis, among which peptide synthesis using unprotected amino acid represents an ideal and promising strategy because it does not require protection and deprotection steps. Unfortunately, C → N peptide synthesis employing unprotected amino acids has been plagued by undesired polymerization, while N → C inverse peptide synthesis with unprotected amino acids is retarded by severe racemization/epimerization owing to the iterative activation and aminolysis of high racemization/epimerization susceptible peptidyl acids. Consequently, there is an urgent need to develop innovative coupling reagents and strategies with novel mechanisms that can address the long-standing notorious racemization/epimerization issue of peptide synthesis.This Account will describe our efforts in discovery of ynamide coupling reagents and their application in greening peptide synthesis. Over an eight-year journey, ynamide coupling reagents have evolved into a class of general coupling reagents for both amide and ester bond formation. In particular, the superiority of ynamide coupling reagents in suppressing racemization/epimerization enabled them to be effective for peptide fragment condensation, and head-to-tail cyclization, as well as precise incorporation of thioamide substitutions into peptide backbones. The first practical inverse peptide synthesis using unprotected amino acids was successfully accomplished by harnessing such features and taking advantage of a transient protection strategy. Ynamide coupling reagent-mediated ester bond formation enabled efficient intermolecular esterification and macrolactonization with preservation of α-chirality and the configuration of the conjugated α,ß-C-C double bond. To make ynamide coupling reagents readily available with reasonable cost and convenience, we have developed a scalable one-step synthetic method from cheap starting materials. Furthermore, a water-removable ynamide coupling reagent was developed, offering a column-free purification of the target coupling product. In addition, the recycle of ynamide coupling reagent was accomplished, thereby paving the way for their sustainable industrial application.As such, this Account presents the whole story of the origin, mechanistic insights, preparation, synthetic applications, and recycle of ynamide coupling reagents with a perspective that highlights their future impact on peptide synthesis.


Assuntos
Amidas , Peptídeos , Indicadores e Reagentes , Peptídeos/química , Amidas/química , Aminoácidos/química , Ésteres
8.
Curr Protoc ; 4(3): e1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511507

RESUMO

Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.


Assuntos
Escherichia coli , Peptídeos , Animais , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peptídeos/genética , Peptídeos/metabolismo , Indicadores e Reagentes/metabolismo , Produtos do Gene tat/metabolismo , Corantes/metabolismo , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
9.
Bioelectrochemistry ; 157: 108672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428185

RESUMO

Modern biosensing technology plays a crucial role in combating the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). However, the associated assays remain costly, considering their extensive daily use. In response, we developed a simplified one-step SARS-CoV-2 protease assay that reduces both time and financial expenses. This approach eliminates the need for extra reagents, enzymes, or antibodies. The simplification involves a photo-sensitive Bengal red-tagged substrate peptide, allowing specific cross-linking upon protease-substrate recognition. This process forms a di-tyrosine product with a distinctive fluorescence signal readout, enabling the detection of SARS-CoV-2 in patient serum samples. This method anticipates a major reduction in assay costs in the near future.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Indicadores e Reagentes , Anticorpos Antivirais , Proteínas , Peptídeos , Peptídeo Hidrolases
10.
ACS Appl Mater Interfaces ; 16(12): 14561-14572, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500377

RESUMO

Uridine diphosphate (UDP)-glucosyltransferases (UGTs) have received increasing attention in the field of ginsenoside Rh2 conversion. By harnessing the metal chelation between transition metal ions and imidazole groups present on His-tagged enzymes, a specific immobilization of the enzyme within metal-organic frameworks (MOFs) is achieved. This innovative approach not only enhances the stability and reusability of the enzyme but also enables one-step purification and immobilization. Consequently, the need for purifying crude enzyme solutions is effectively circumvented, resulting in significant cost savings during experimentation. The use of immobilized enzymes in catalytic reactions has shown great potential for achieving higher conversion rates of ginsenoside Rh2. In this study, highly stable mesoporous Zn-Ni MOF materials were synthesized at 150 °C by a solvothermal method. The UGT immobilized on the Zn-Ni MOF (referred to as UGT@Zn-Ni MOF) exhibited superior pH adaptability and thermal stability, retaining approximately 76% of its initial activity even after undergoing 7 cycles. Furthermore, the relative activity of the immobilized enzyme remained at an impressive 80.22% even after 45 days of storage. The strong specific adsorption property of Zn-Ni MOF on His-tagged UGT was confirmed through analysis using polyacrylamide gel electrophoresis. UGT@Zn-Ni MOF was used to catalyze the conversion reaction, and the concentration of rare ginsenoside Rh2 was generated at 3.15 µg/mL. The results showed that Zn-Ni MOF is a material that can efficiently purify and immobilize His-tagged enzyme in one step and has great potential for industrial applications in enzyme purification and ginsenoside synthesis.


Assuntos
Ginsenosídeos , Glicosiltransferases , Enzimas Imobilizadas/química , Indicadores e Reagentes , Zinco
11.
PLoS One ; 19(3): e0299364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551992

RESUMO

The purpose of this study is to examine the possibility of GO to be used as an adsorbent for five novel potentially hazardous azo-dyes for their removal from aqueous solution. Adsorption characteristics of GO for azo-dyes removal were investigated by means of experimental and computational DFT as well as Monte Carlo approaches. Experimental studies include the effect of adsorbent dose, contact time, and initial concentration, while computational investigation involves DFT and Monte Carlo (MC) simulations. Through DFT studies geometric, electronic, and thermodynamic parameters were explored and possible mechanism of interactions and adsorption energies by predicted through MC by searching lowest possible adsorption complexes. Experimental data were evaluated by Langmuir models in order to describe the equilibrium isotherms. Equilibrium data fitted well to the Langmuir model. Thermodynamic parameters i.e., free energy change, enthalpy change, and entropy change revealed that the removal of azo-dyes by adsorption on the surface of GO molecular sieves was spontaneous. Nature of the process was found to be physiosorption involving non-covalent interaction. The study unveiled that GO can be used as an efficient adsorbent material for the adsorption of azo-dyes from aqueous solution.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Adsorção , Cinética , Termodinâmica , Indicadores e Reagentes , Água , Corantes , Concentração de Íons de Hidrogênio
12.
Anal Methods ; 16(13): 1948-1956, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38445900

RESUMO

Nucleic acids, which have been employed in medicines for various diseases, are attracting attention as a new pharmaceutical model. Depending on the target substances, nucleic acid medicines with various nucleic acid chain lengths (several tens of nucleotides [nt] to several thousands of nt) exist. The purification of synthesized nucleic acids is crucial as various impurities remain in the crude product after synthesis. Presently, reversed-phase high-performance liquid chromatography (RP-HPLC) represents an effective purification method for nucleic acids. However, the information regarding the HPLC conditions for separating and purifying nucleic acids of various chain lengths is insufficient. Thus, this technical note describes the separation and purification of short-, medium-, and long-stranded nucleic acids (several tens of nt to thousands of nt) by RP-HPLC with various mobile phases and octadecyl-based columns with various pore sizes, such as normal (9-12 nm), wide (30 nm), and super wide (>30 nm) pores.


Assuntos
Ácidos Nucleicos , RNA , Cromatografia Líquida de Alta Pressão/métodos , Indicadores e Reagentes , Nucleotídeos
13.
J Chromatogr A ; 1720: 464771, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447433

RESUMO

During collagen biosynthesis, proline is post-translationally converted to hydroxyproline by specific enzymes. This amino acid, unique to collagen, plays a crucial role in stabilizing the collagen triple helix structure and could serve as an important biomarker for collagen content and quality analysis. Hydroxyproline has four isomers, depending on whether proline is hydroxylated at position 4 or 3 and on whether the cis- or trans- conformation is formed. Moreover, as extensive hydrolysis of collagen is required for its amino acid analysis, epimerization may also occur, although to a lesser extent, giving a total of eight possible isomers. The aim of the present study was to develop a reversed-phase high-performance liquid chromatography-UV-mass spectrometry (RPLC-UV-MS) method for the separation and quantification of all eight hydroxyproline isomers. After the chiral derivatization of the hydroxyproline isomers with Nα-(2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA), to enable their UV detection, the derivatized diastereoisomers were separated by testing different C18 column technologies and morphologies and optimizing operative conditions such as the mobile phase composition (solvent, additives), elution mode, flow rate and temperature. Baseline resolution of all eight isomers was achieved on a HALO® ES-C18 reversed-phase column (150×1.5 mm, 2.7 µm, 160 Å) using isocratic elution and MS-compatible mobile phase. The optimized method was validated for the quantification of hydroxyproline isomers and then applied to different collagen hydrolysates to gain insight and a deeper understanding of hydroxyproline abundances in different species (human, chicken) and sources (native, recombinant).


Assuntos
Colágeno , Prolina , Humanos , Hidroxiprolina/análise , Cromatografia Líquida de Alta Pressão/métodos , Colágeno/análise , Colágeno/química , Indicadores e Reagentes
14.
J Histochem Cytochem ; 72(4): 233-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553997

RESUMO

Xylene is the commonest clearing agent even though it is hazardous and costly. This study evaluated the clearing properties of coconut oil as an alternative cost-effective clearing agent for histological processes. Ten (10) prostate samples fixed in formalin were taken and each one was cut into 4 before randomly separating them into four groups (A, B, C and D). Tissues were subjected to ascending grades of alcohol for dehydration. Group A was cleared in xylene and Groups B, C, and D were cleared at varying times of 1hr 30mins, 3hrs, and 4hrs in coconut oil respectively before embedding, sectioning, and staining were carried out. Gross and histological features were compared. Results indicated a significant shrinkage in coconut oil-treated specimen compared with the xylene-treated specimen and only the tissues cleared in coconut oil for 4hrs were as rigid as the tissues cleared in xylene (p > 0.05). No significant difference was found in either of the sections when checked for cellular details and staining quality (p > 0.999). Coconut oil is an efficient substitute for xylene in prostate tissues with a minimum clearing time of 4hrs, as it is environmentally friendly and less expensive, but causes significant shrinkage to prostate tissue.


Assuntos
Formaldeído , Xilenos , Óleo de Coco , Xilenos/química , Coloração e Rotulagem , Indicadores e Reagentes
15.
J Chromatogr A ; 1721: 464819, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537485

RESUMO

Silanophilic interactions are a primary contributor to peak tailing of acidic pharmaceutical compounds, thus a thorough understanding is especially important for reversed-phase liquid chromatography (RPLC) method development. Herein, a sulfinic acid compound that exhibited severe peak tailing in RPLC with acidic mobile phases was carefully studied. Results indicated that the neutral protonated form of the sulfinic acid is involved in the strong interaction that leads to peak tailing, but that tailing can be mitigated with a blocking effect achieved through use of acetic acid modifier in the mobile phase. Peak tailing was also observed with other structurally-similar sulfinic acids and carboxylic acids but was, in general, less severe with the latter. The Hydrophobic Subtraction Model (HSM) was applied to six commercial C18 columns that exhibited different tailing behaviors for the sulfinic acid compound in attempts to identify key sites of interaction within the stationary phase. A combination of heated acid column wash experiments and density functional theory (DFT) calculations indicate that the differential interactions of the acids with vicinal silanol pairs in the stationary phase play a major role in peak tailing.


Assuntos
Cromatografia de Fase Reversa , Ácidos Sulfínicos , Cromatografia de Fase Reversa/métodos , Ácidos Carboxílicos , Indicadores e Reagentes , Ácido Acético , Cromatografia Líquida de Alta Pressão/métodos
16.
J Chromatogr A ; 1721: 464833, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38555828

RESUMO

A 3 µm undecylenic acid-functionalized stationary phase (UAS) was prepared for the separation of nucleosides and nucleobases using per aqueous liquid chromatography (PALC) and hydrophilic interaction liquid chromatography (HILIC). The retention behaviors of nucleosides and nucleobases in PALC and HILIC modes were explored by adjusting parameters such as water content, buffer concentration, pH of the mobile phase and column temperature. The experimental data and separation chromatogram demonstrated that PALC could provide retention comparable to that of HILIC for nucleosides and nucleobases. Comparative studies using diluted adenosine solutions evaluated theoretical plates and peak shape for the same retention factors (between 0.25 and 5.0) in PALC and HILIC. There was no buffer component in the mobile phases used to operate the comparisons. HILIC mode is more efficient for adenosine than PALC mode at low retention factors. It's the exact opposite phenomenon for high retention factors. It is proposed that the mass transfer of adenosine between the UAS, the water-rich layer and the ACN-rich mobile phase in HILIC is relatively slow. Given the significant use of toxic ACN in HILIC, PALC emerges as a safer and more effective alternative for separating nucleosides and nucleobases.


Assuntos
Nucleosídeos , Dióxido de Silício , Ácidos Undecilênicos , Dióxido de Silício/química , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Água/química , Indicadores e Reagentes , Adenosina
17.
Zhonghua Yi Xue Za Zhi ; 104(11): 857-864, 2024 Mar 19.
Artigo em Chinês | MEDLINE | ID: mdl-38462362

RESUMO

Objective: To establish the threshold value of human leukocyte antigen (HLA) mixed antigen reagent screening test results, and to verify it by HLA single antigen reagent confirmation test results. Methods: The results of 2 255 serum samples tested for HLA antibodies by HLA mixed antigen reagent in the department of HLA Laboratory, the First Affiliated Hospital of Soochow University from October 2017 to December 2021 were retrospectively analyzed. Among them, 1 139 samples were also tested by single antigen HLA Class-Ⅰ reagent and 1 116 samples were also tested by single antigen HLA Class-Ⅱ reagent. Based on the same antigens coated with both reagents, the Mean Fluorescence Intensity (MFI) and Nomalized Background ratio (NBG ratio) of 12 HLA Class-Ⅰ beads and 5 HLA Class-Ⅱ beads in the HLA mixed antigen reagent and the MFI of 77 anti-HLA class-Ⅰ antibodies and 35 anti-HLA class-Ⅱ antibodies detected by HLA single antigen reagent were recorded. The MFI and NBG ratio of HLA mixed antigen reagent beads in 1 139 or 1 116 samples were segmented according to the positive rate of antibodyies detected by the single antigen reagent corresponding to the antigens coated with each HLA mixed antigen reagent bead, and the results of the HLA mixed antigen screening test were verified by the HLA single antigen reagent confirmation test. Results: The threshold values of MFI and NBG ratio of HLA mixed antigen reagent's 17 beads were established. The MFI of No. 1 to No. 17 beads of HLA mixed antigen reagent ranged from 26.86 to 21 925.58, and the NBG ratio ranged from 0 to 434.65. According to the positive detection rate of HLA single antigen reagent corresponding to the coated antigens, the MFI and NBG ratio of the beads of HLA mixed antigen reagent were divided into positive interval, suspicious positive interval, suspicious negative interval and negative interval. The positive rates of anti-HLA class-Ⅰ antibodies by HLA mixed antigen reagent and single antigen HLA Class-Ⅰ reagent were 87.5% (997/1 139) and 66.3% (755/1 139). The positive rates of anti-HLA class-Ⅱ antibodies were 63.4% (707/1 116) and 44.9% (501/1 116). In the samples with suspicious negative, suspicious positive and positive results of HLA class-Ⅰ、Ⅱ antibodies detected by HLA mixed antigen reagent, the positive detection rates of single antigen HLA Class-Ⅰ reagent were 14.9% (17/114), 41.3% (145/351) and 91.3% (590/646), respectively. The positive detection rates of single antigen HLA Class-Ⅱ reagent were 15.5% (58/375), 26.5% (81/306) and 88.8% (356/401), respectively. Conclusions: In this study, the threshold values of MFI and NBG ratio of HLA mixed antigen reagent screening test are established, and the threshold values are verified by the results of HLA single antigen reagent confirmation test. HLA mixed reagent screening test can be used for screening of HLA antibodies, and if necessary, it should be combined with HLA single antigen confirmatory test for clinical detection of HLA antibodies.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Humanos , Indicadores e Reagentes , Estudos Retrospectivos , Teste de Histocompatibilidade/métodos , Antígenos de Histocompatibilidade Classe I , Isoanticorpos , Rejeição de Enxerto
18.
J Colloid Interface Sci ; 664: 650-666, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490040

RESUMO

Functionalized single-walled carbon nanotubes (SWCNTs) hold immense potential for diverse biomedical applications due to their biocompatibility and optical properties, including near-infrared fluorescence. Specifically, SWCNTs have been utilized to target cells as a vehicle for drug delivery and gene therapy, and as sensors for various intracellular biomarkers. While the main internalization route of SWCNTs into cells is endocytosis, methods for enhancing the cellular uptake of SWCNTs are of great importance. In this research, we demonstrate the use of a transfecting reagent for promoting cell internalization of functionalized SWCNTs. We explore different types of SWCNT functionalization, namely single-stranded DNA (ssDNA) or polyethylene glycol (PEG)-lipids, and two different cell types, embryonic kidney cells and adenocarcinoma cells. We show that internalizing PEGylated functionalized SWCNTs is enhanced in the presence of the transfecting reagent, where the effect is more pronounced for negatively charged PEG-lipid. However, ssDNA-SWCNTs tend to form aggregates in the presence of the transfecting reagent, rendering it unsuitable for promoting internalization. For all cases, cellular uptake is visualized by near-infrared fluorescence microscopy, showing that the SWCNTs are typically localized within the lysosome. Generally, cellular internalization was higher in the adenocarcinoma cells, thereby paving new avenues for drug delivery and sensing in malignant cells.


Assuntos
Adenocarcinoma , Nanotubos de Carbono , Humanos , Indicadores e Reagentes , Microscopia de Fluorescência , Polietilenoglicóis
19.
J Org Chem ; 89(7): 4512-4522, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38500313

RESUMO

Over the past two decades, the introduction of bioorthogonal reactions has transformed the ways in which chemoselective labeling, isolation, imaging, and drug delivery are carried out in a complex biological milieu. A key feature of a good bioorthogonal probe is the ease with which it can be attached to a target compound through bioconjugation. This paper describes the expansion of the utility of a class of unique S-, N-, and O-containing heterocyclooctynes (SNO-OCTs), which show chemoselective reactivity with type I and type II dipoles and divergent reactivities in response to electronic tuning of the alkyne. Currently, bioconjugation of SNO-OCTs to a desired target is achieved through an inconvenient aryl or amide linker at the sulfamate nitrogen. Herein, a new synthetic approach toward general SNO-OCT scaffolds is demonstrated that enables the installation of functional handles at both propargylic carbons of the heterocycloalkyne. This capability increases the utility of SNO-OCTs as labeling reagents through the design of bifunctional bioorthogonal probes with expanded capabilities. NMR kinetics also revealed up to sixfold improvement in cycloaddition rates of new analogues compared to first-generation SNO-OCTs.


Assuntos
Alcinos , Nitrogênio , Reação de Cicloadição , Alcinos/química , Nitrogênio/química , Indicadores e Reagentes , Amidas
20.
Org Lett ; 26(13): 2590-2595, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517348

RESUMO

In this Letter, we report a direct and robust desulfurization method employing water-soluble phosphine, specifically tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and tetrahydroxydiboron (B2(OH)4), which serves as a radical initiator. This innovative reaction exhibits compatibility with a diverse array of substrates, including cysteine residues in chemically synthesized oligopeptides and cyclic peptides, alkyl thiols in bioactive molecules, disulfides in commercial proteins, and selenocysteine. We optimized the reaction conditions to minimize the formation of undesired oxidized and borylated byproducts. Furthermore, the refined desulfurization process is executed after native chemical ligation (NCL) in a single pot, streamlining the existing synthetic approaches. This demonstrates its potential applications in the synthesis of complex peptides and proteins, showcasing a significant advancement in the field.


Assuntos
Peptídeos , Proteínas , Indicadores e Reagentes , Peptídeos/química , Proteínas/química , Cisteína/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...