Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136.197
Filtrar
1.
Traffic Inj Prev ; 25(4): 640-648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578292

RESUMO

OBJECTIVE: Occupant impact safety is critical for train development. This paper proposes a systematic procedure for developing validated numerical occupant crash scenarios for high-speed trains by integrating experimental, computational, and inverse methods. METHODS: As the train interior is the most potentially injury-causing factor, the material properties were acquired by mechanical tests, and constitutive models were calibrated using inverse methods. The validity of the seat material constitutive model was further verified via drop tower tests. Finite element (FE) and multibody (MB) models of train occupant-seat interactions in frontal impact were established in LS-DYNA and MADYMO software, respectively, using the experimentally acquired materials/mechanical characteristics. Three dummy sled crash tests with different folding table and backrest configurations were conducted to validate the numerical occupant-seat models and to further assess occupant injury in train collisions. The occupant impact responses between dummy tests and simulations were quantitatively compared using a correlation and analysis (CORA) objective rating method. RESULTS: Results indicated that the experimentally calibrated numerical seat-occupant models could effectively reproduce the occupant responses in bullet train collisions (CORA scores >80%). Compared with the train seat-occupant MB model, the FE model could simulate the head acceleration with slightly more acceptable fidelity, however, the FE model CORA scores were slightly less than for the MB models. The maximum head acceleration was 30 g but the maximum HIC score was 17.4. When opening the folding table, the occupant's chest injury was not obvious, but the neck-table contact and "chokehold" may potentially be severe and require further assessment. CONCLUSIONS: This study demonstrates the value of experimental data for occupant-seat model interactions in train collisions and provides practical help for train interior safety design and formulation of standards for rolling stock interior passive safety.


Assuntos
Acidentes de Trânsito , Traumatismos Torácicos , Humanos , Pescoço , Aceleração , Postura Sentada , Fenômenos Biomecânicos
2.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610338

RESUMO

Inertial measurement units (IMUs) offer a portable and quantitative solution for clinical movement analysis. However, their application in non-specific low back pain (NSLBP) remains underexplored. This study compared the spine and pelvis kinematics obtained from IMUs between individuals with and without NSLBP and across clinical subgroups of NSLBP. A total of 81 participants with NSLBP with flexion (FP; n = 38) and extension (EP; n = 43) motor control impairment and 26 controls (No-NSLBP) completed 10 repetitions of spine movements (flexion, extension, lateral flexion). IMUs were placed on the sacrum, fourth and second lumbar vertebrae, and seventh cervical vertebra to measure inclination at the pelvis, lower (LLx) and upper (ULx) lumbar spine, and lower cervical spine (LCx), respectively. At each location, the range of movement (ROM) was quantified as the range of IMU orientation in the primary plane of movement. The ROM was compared between NSLBP and No-NSLBP using unpaired t-tests and across FP-NSLBP, EP-NSLBP, and No-NSLBP subgroups using one-way ANOVA. Individuals with NSLBP exhibited a smaller ROM at the ULx (p = 0.005), LLx (p = 0.003) and LCx (p = 0.01) during forward flexion, smaller ROM at the LLx during extension (p = 0.03), and a smaller ROM at the pelvis during lateral flexion (p = 0.003). Those in the EP-NSLBP group had smaller ROM than those in the No-NSLBP group at LLx during forward flexion (Bonferroni-corrected p = 0.005), extension (p = 0.013), and lateral flexion (p = 0.038), and a smaller ROM at the pelvis during lateral flexion (p = 0.005). Those in the FP-NSLBP subgroup had smaller ROM than those in the No-NSLBP group at the ULx during forward flexion (p = 0.024). IMUs detected variations in kinematics at the trunk, lumbar spine, and pelvis among individuals with and without NSLBP and across clinical NSLBP subgroups during flexion, extension, and lateral flexion. These findings consistently point to reduced ROM in NSLBP. The identified subgroup differences highlight the potential of IMU for assessing spinal and pelvic kinematics in these clinically verified subgroups of NSLBP.


Assuntos
Dor Lombar , Humanos , Fenômenos Biomecânicos , Pelve , Sacro , Análise de Variância
3.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610402

RESUMO

Running is one of the most popular sports practiced today and biomechanical variables are fundamental to understanding it. The main objectives of this study are to describe kinetic, kinematic, and spatiotemporal variables measured using four inertial measurement units (IMUs) in runners during treadmill running, investigate the relationships between these variables, and describe differences associated with different data sampling and averaging strategies. A total of 22 healthy recreational runners (M age = 28 ± 5.57 yrs) participated in treadmill measurements, running at their preferred speed (M = 10.1 ± 1.9 km/h) with a set-up of four IMUs placed on tibias and the lumbar area. Raw data was processed and analysed over selections spanning 30 s, 30 steps and 1 step. Very strong positive associations were obtained between the same family variables in all selections. The temporal variables were inversely associated with the step rate variable in the selection of 30 s and 30 steps of data. There were moderate associations between kinetic (forces) and kinematic (displacement) variables. There were no significant differences between the biomechanics variables in any selection. Our results suggest that a 4-IMU set-up, as presented in this study, is a viable approach for parameterization of the biomechanical variables in running, and also that there are no significant differences in the biomechanical variables studied independently, if we select data from 30 s, 30 steps or 1 step for processing and analysis. These results can assist in the methodological aspects of protocol design in future running research.


Assuntos
Nível de Saúde , Corrida , Fenômenos Biomecânicos , Cinética , Região Lombossacral
4.
PLoS One ; 19(4): e0301896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598520

RESUMO

This study investigates whether humans recognize different emotions conveyed only by the kinematics of a single moving geometrical shape and how this competence unfolds during development, from childhood to adulthood. To this aim, animations in which a shape moved according to happy, fearful, or neutral cartoons were shown, in a forced-choice paradigm, to 7- and 10-year-old children and adults. Accuracy and response times were recorded, and the movement of the mouse while the participants selected a response was tracked. Results showed that 10-year-old children and adults recognize happiness and fear when conveyed solely by different kinematics, with an advantage for fearful stimuli. Fearful stimuli were also accurately identified at 7-year-olds, together with neutral stimuli, while, at this age, the accuracy for happiness was not significantly different than chance. Overall, results demonstrates that emotions can be identified by a single point motion alone during both childhood and adulthood. Moreover, motion contributes in various measures to the comprehension of emotions, with fear recognized earlier in development and more readily even later on, when all emotions are accurately labeled.


Assuntos
Emoções , Expressão Facial , Adulto , Criança , Humanos , Fenômenos Biomecânicos , Emoções/fisiologia , Medo , Felicidade
5.
Med Eng Phys ; 126: 104136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621835

RESUMO

Computer representations of three-dimensional (3D) geometries are crucial for simulating systems and processes in engineering and science. In medicine, and more specifically, biomechanics and orthopaedics, obtaining and using 3D geometries is critical to many workflows. However, while many tools exist to obtain 3D geometries of organic structures, little has been done to make them usable for their intended medical purposes. Furthermore, many of the proposed tools are proprietary, limiting their use. This work introduces two novel algorithms based on Generalized Regression Neural Networks (GRNN) and 4 processes to perform mesh morphing and overclosure adjustment. These algorithms were implemented, and test cases were used to validate them against existing algorithms to demonstrate improved performance. The resulting algorithms demonstrate improvements to existing techniques based on Radial Basis Function (RBF) networks by converting to GRNN-based implementations. Implementations in MATLAB of these algorithms and the source code are publicly available at the following locations: https://github.com/thor-andreassen/femors; https://simtk.org/projects/femors-rbf; https://www.mathworks.com/matlabcentral/fileexchange/120353-finite-element-morphing-overclosure-reduction-and-slicing.


Assuntos
Algoritmos , Redes Neurais de Computação , Análise de Elementos Finitos , Software , Fenômenos Biomecânicos
6.
Med Eng Phys ; 126: 104130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621832

RESUMO

Biphasic models have been widely used to simulate the time-dependent biomechanical response of soft tissues. Modelling techniques of joints with biphasic weight-bearing soft tissues have been markedly improved over the last decade, enhancing our understanding of the function, degenerative mechanism and outcomes of interventions of joints. This paper reviews the recent advances, challenges and opportunities in computational models of joints with biphasic weight-bearing soft tissues. The review begins with an introduction of the function and degeneration of joints from a biomechanical aspect. Different constitutive models of articular cartilage, in particular biphasic materials, are illustrated in the context of the study of contact mechanics in joints. Approaches, advances and major findings of biphasic models of the hip and knee are presented, followed by a discussion of the challenges awaiting to be addressed, including the convergence issue, high computational cost and inadequate validation. Finally, opportunities and clinical insights in the areas of subject-specific modeling and tissue engineering are provided and discussed.


Assuntos
Cartilagem Articular , Modelos Biológicos , Humanos , Fenômenos Biomecânicos , Articulações/fisiologia , Cartilagem Articular/fisiologia , Simulação por Computador , Articulação do Joelho/fisiologia , Análise de Elementos Finitos
7.
Med Eng Phys ; 126: 104151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621840

RESUMO

This study aimed to characterize ankle and hindfoot kinematics of healthy men and women during overground running using biplane radiography, and to compare these data to those previously obtained in the same cohort during overground walking. Participants ran across an elevated platform at a self-selected pace while synchronized biplane radiographs of their ankle and hindfoot were acquired. Motion of the tibia, talus, and calcaneus was tracked using a validated volumetric model-based tracking process. Tibiotalar and subtalar 6DOF kinematics were obtained. Absolute side-to-side differences in ROM and kinematics waveforms were calculated. Side-to-side and sex-specific differences were evaluated at 10 % increments of stance phase with mixed model analysis. Pearson correlation coefficients were used to assess the relationship between stance-phase running and walking kinematics. 20 participants comprised the study cohort (10 men, mean age 30.8 ± 6.3 years, mean BMI 24.1 ± 3.1). Average absolute side-to-side differences in running kinematics waveforms were 5.6°/2.0 mm or less at the tibiotalar joint and 5.2°/3.2 mm or less at the subtalar joint. No differences in running kinematics waveforms between sides or between men and women were detected. Correlations were stronger at the tibiotalar joint (42/66 [64 %] of correlations were p < 0.05), than at the tibiotalar joint (38/66 [58 %] of correlations were p < 0.05). These results provide a normative reference for evaluating native ankle and hindfoot kinematics which may be informative in surgical or rehabilitation contexts. Sex-specific differences in ankle kinematics during overground running are likely not clinically or etiologically significant. Associations seen between walking and running kinematics suggest one could be used to predict the other.


Assuntos
Tornozelo , Corrida , Masculino , Adulto , Humanos , Feminino , Adulto Jovem , Tornozelo/diagnóstico por imagem , Pé/diagnóstico por imagem , Articulação do Tornozelo/diagnóstico por imagem , Caminhada , Radiografia , Fenômenos Biomecânicos , Amplitude de Movimento Articular
8.
Med Eng Phys ; 126: 104146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621847

RESUMO

Low back pain (LBP) is a leading cause of disability, resulting in aberrant movement. This movement is difficult to measure accurately in clinical practice and gold standard methods, such as optoelectronic systems involve the use of expensive laboratory equipment. Inertial measurement units (IMU) offer an alternative method of quantifying movement that is accessible in most environments. However, there is no consensus around the validity and reliability of IMUs for quantifying lumbar spine movements compared with gold standard measures. The aim of this systematic review was to establish concurrent validity and repeated measures reliability of using IMUs for the measurement of lumbar spine movements in individuals with and without LBP. A systematic search of electronic databases, incorporating PRISMA guidelines was completed, limited to the English language. 503 studies were identified where 15 studies met the inclusion criteria. Overall, 305 individuals were included, and 109 of these individuals had LBP. Weighted synthesis of the results demonstrated root mean squared differences of <2.4° compared to the gold standard and intraclass correlations >0.84 for lumbar spine movements. IMUs offer clinicians and researchers valid and reliable measurement of motion in the lumbar spine, comparable to laboratory methods, such as optoelectronic motion capture for individuals with and without LBP.


Assuntos
Dor Lombar , Humanos , Dor Lombar/diagnóstico , Reprodutibilidade dos Testes , Amplitude de Movimento Articular , Fenômenos Biomecânicos , Vértebras Lombares , Movimento
9.
Med Eng Phys ; 126: 104142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621844

RESUMO

Total hip arthroplasty (THA) surgeries among young patients are on the increase, so it is crucial to predict the lifespan of hip implants correctly and produce solutions to improve longevity. Current implants are designed and tested against walking conditions to predict the wear rates. However, it would be reasonable to include the additional effects of other daily life activities on wear rates to predict convergent results to clinical outputs. In this study, 14 participants are recruited to perform stair ascending (AS), descending (DS), and walking activities to obtain kinematic and kinetic data for each cycle using marker based Qualisys motion capture (MOCAP) system. AnyBody Modeling System using the Calibrated Anatomical System Technique (CAST) full body marker set are performed Multibody simulations. The 3D generic musculoskeletal model used in this study is a marker-based full-body motion capture model (AMMR,2.3.1 MoCapModel) consisting of the upper extremity and the Twente Lower Extremity Model (TLEM2). The dynamic wear prediction model detailing the intermittent and overall wear rates for CoCr-on-XLPE bearing couple is developed to investigate the wear mechanism under 3D loading for AS, DS, and walking activities over 5 million cycles (Mc) by using finite element modelling technique. The volumetric wear rates of XLPE liner under AS, DS, and walking activities over 5-Mc are predicted as 27.43, 23.22, and 18.84 mm3/Mc respectively. Additionally, the wear rate was predicted by combining stair activities and gait cycles based on the walk-to-stair ratio. By adding the effect of stair activities, the volumetric wear rate of XLPE is predicted as 22.02 mm3/Mc which is equivalent to 19.41% of walking. In conclusion, in this study, the effect of including other daily life activities is demonstrated and evidence is provided by matching them to the clinical data as opposed to simulator test results of implants under ISO 14242 boundary conditions.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Longevidade , Marcha , Fenômenos Biomecânicos , Falha de Prótese , Desenho de Prótese
10.
Med Eng Phys ; 126: 104143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621845

RESUMO

Primary implant stability, which refers to the stability of the implant during the initial healing period is a crucial factor in determining the long-term success of the implant and lays the foundation for secondary implant stability achieved through osseointegration. Factors affecting primary stability include implant design, surgical technique, and patient-specific factors like bone quality and morphology. In vivo, the cyclic nature of anatomical loading puts osteosynthesis locking screws under dynamic loads, which can lead to the formation of micro cracks and defects that slowly degrade the mechanical connection between the bone and screw, thus compromising the initial stability and secondary stability of the implant. Monotonic quasi-static loading used for testing the holding capacity of implanted screws is not well suited to capture this behavior since it cannot capture the progressive deterioration of peri­implant bone at small displacements. In order to address this issue, this study aims to determine a critical point of loss of primary implant stability in osteosynthesis locking screws under cyclic overloading by investigating the evolution of damage, dissipated energy, and permanent deformation. A custom-made test setup was used to test implanted 2.5 mm locking screws under cyclic overloading test. For each loading cycle, maximum forces and displacement were recorded as well as initial and final cycle displacements and used to calculate damage and energy dissipation evolution. The results of this study demonstrate that for axial, shear, and mixed loading significant damage and energy dissipation can be observed at approximately 20 % of the failure force. Additionally, at this load level, permanent deformations on the screw-bone interface were found to be in the range of 50 to 150 mm which promotes osseointegration and secondary implant stability. This research can assist surgeons in making informed preoperative decisions by providing a better understanding of the critical point of loss of primary implant stability, thus improving the long-term success of the implant and overall patient satisfaction.


Assuntos
Placas Ósseas , Fixação Interna de Fraturas , Humanos , Fenômenos Biomecânicos , Fixação Interna de Fraturas/métodos , Parafusos Ósseos , Fenômenos Mecânicos
12.
PLoS One ; 19(4): e0300108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568899

RESUMO

Delving into the complexities of embodied cognition unveils the intertwined influence of mind, body, and environment. The connection of physical activity with cognition sparks a hypothesis linking motion and personality traits. Hence, this study explored whether personality traits could be linked to biomechanical variables characterizing running forms. To do so, 80 runners completed three randomized 50-m running-trials at 3.3, 4.2, and 5m/s during which their running biomechanics [ground contact time (tc), flight time (tf), duty factor (DF), step frequency (SF), leg stiffness (kleg), maximal vertical ground reaction force (Fmax), and maximal leg compression of the spring during stance (ΔL)] was evaluated. In addition, participants' personality traits were assessed through the Myers-Briggs Type Indicator (MBTI) test. The MBTI classifies personality traits into one of two possible categories along four axes: extraversion-introversion; sensing-intuition; thinking-feeling; and judging-perceiving. This exploratory study offers compelling evidence that personality traits, specifically sensing and intuition, are associated with distinct running biomechanics. Individuals classified as sensing demonstrated a more grounded running style characterized by prolonged tc, shorter tf, higher DF, and greater ΔL compared to intuition individuals (p≤0.02). Conversely, intuition runners exhibited a more dynamic and elastic running style with a shorter tc and higher kleg than their sensing counterparts (p≤0.02). Post-hoc tests revealed a significant difference in tc between intuition and sensing runners at all speeds (p≤0.02). According to the definition of each category provided by the MBTI, sensing individuals tend to focus on concrete facts and physical realities while intuition individuals emphasize abstract concepts and patterns of information. These results suggest that runners with sensing and intuition personality traits differ in their ability to use their lower limb structures as springs. Intuition runners appeared to rely more in the stretch-shortening cycle to energetically optimize their running style while sensing runners seemed to optimize running economy by promoting more forward progression than vertical oscillations. This study underscores the intriguing interplay between personality traits of individuals and their preferred movement patterns.


Assuntos
Intuição , Corrida , Humanos , Fenômenos Biomecânicos , Extremidade Inferior , Emoções
13.
J Orthop Surg Res ; 19(1): 209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561837

RESUMO

BACKGROUND: Previous studies have demonstrated the clinical efficacy of decompression alone in lower-grade spondylolisthesis. A higher rate of surgical revision and a lower rate of back pain relief was also observed. However, there is a lack of relevant biomechanical evidence after decompression alone for lower-grade spondylolisthesis. PURPOSE: Evaluating the biomechanical characteristics of total laminectomy, hemilaminectomy, and facetectomy for lower-grade spondylolisthesis by analyzing the range of motion (ROM), intradiscal pressure (IDP), annulus fibrosus stress (AFS), facet joints contact force (FJCF), and isthmus stress (IS). METHODS: Firstly, we utilized finite element tools to develop a normal lumbar model and subsequently constructed a spondylolisthesis model based on the normal model. We then performed total laminectomy, hemilaminectomy, and one-third facetectomy in the normal model and spondylolisthesis model, respectively. Finally, we analyzed parameters, such as ROM, IDP, AFS, FJCF, and IS, for all the models under the same concentrate force and moment. RESULTS: The intact spondylolisthesis model showed a significant increase in the relative parameters, including ROM, AFS, FJCF, and IS, compared to the intact normal lumbar model. Hemilaminectomy and one-third facetectomy in both spondylolisthesis and normal lumbar models did not result in an obvious change in ROM, IDP, AFS, FJCF, and IS compared to the pre-operative state. Moreover, there was no significant difference in the degree of parameter changes between the spondylolisthesis and normal lumbar models after undergoing the same surgical procedures. However, total laminectomy significantly increased ROM, AFS, and IS and decreased the FJCF in both normal lumbar models and spondylolisthesis models. CONCLUSION: Hemilaminectomy and one-third facetectomy did not have a significant impact on the segment stability of lower-grade spondylolisthesis; however, patients with LDS undergoing hemilaminectomy and one-third facetectomy may experience higher isthmus stress on the surgical side during rotation. In addition, total laminectomy changes the biomechanics in both normal lumbar models and spondylolisthesis models.


Assuntos
Fusão Vertebral , Espondilolistese , Humanos , Espondilolistese/cirurgia , Análise de Elementos Finitos , Vértebras Lombares/cirurgia , Laminectomia/métodos , Fusão Vertebral/métodos , Fenômenos Biomecânicos , Amplitude de Movimento Articular/fisiologia , Descompressão
14.
Sci Rep ; 14(1): 8160, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589521

RESUMO

To analyze the changing trend of CH and CRF values under different influencing factors in T2DM patients. A total of 650 patients with T2DM were included. We discovered that the course of T2DM, smoking history, BMI, and FBG, DR, HbA1c, TC, TG, and LDL-C levels were common risk factors for T2DM, while HDL-C levels were a protective factor. Analyzing the CH and CRF values according to the course of diabetes, we discovered that as T2DM continued to persist, the values of CH and CRF gradually decreased. Moreover, with the increase in FBG levels and the accumulation of HbA1c, the values of CH and CRF gradually decreased. In addition, in patients with HbA1c (%) > 12, the values of CH and CRF decreased the most, falling by 1.85 ± 0.33 mmHg and 1.28 ± 0.69 mmHg, respectively. Compared with the non-DR group, the CH and CRF values gradually decreased in the mild-NPDR, moderate-NPDR, severe-NPDR and PDR groups, with the lowest CH and CRF values in the PDR group. In patients with T2DM, early measurement of corneal biomechanical properties to evaluate the change trend of CH and CRF values in different situations will help to identify and prevent diabetic keratopathy in a timely manner.


Assuntos
Córnea , Diabetes Mellitus Tipo 2 , Humanos , Hemoglobinas Glicadas , Fenômenos Biomecânicos , Pressão Intraocular , Elasticidade , Tonometria Ocular
15.
BMC Musculoskelet Disord ; 25(1): 271, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589829

RESUMO

BACKGROUND: Single limb support phase of the gait-cycle in patients who are treated for a pertrochanteric fracture is characterized by transversal loads acting on the lag screw, tending to block its dynamization. If the simultaneous axial force overcomes transversal loads of the sliding screw, the dynamization can still occur. METHODS: Biomechanical investigation was performed for three types of dynamic implants: Gamma Nail, and two types of Selfdynamizable Internal Fixators (SIF) - SIF-7 (containing two 7 mm non-cannulated sliding screws), and SIF-10 (containing one 10 mm cannulated sliding screw). Contact surface between the stem and the sliding screws is larger in SIF implants than in Gamma Nail, as the stem of Gamma Nail is hollow. A special testing device was designed for this study to provide simultaneous application of a controlled sliding screws bending moment and a controlled transversal load on sliding screws (Qt) without using of weights. Using each of the implants, axial forces required to initiate sliding screws dynamization (Qa) were applied and measured using a tensile testing machine, for several values of sliding screws bending moment. Standard least-squares method was used to present the results through the linear regression model. RESULTS: Positive correlation between Qt and Qa was confirmed (p < 0.05). While performing higher bending moments in all the tested implants, Qa was higher than it could be provided by the body weight. It was the highest in Gamma Nail, and the lowest in SIF-10. CONCLUSIONS: A larger contact surface between a sliding screw and stem results in lower forces required to initiate dynamization of a sliding screw. Patients treated for a pertrochanteric fracture by a sliding screw internal fixation who have longer femoral neck or higher body weight could have different programme of early postoperative rehabilitation than lighter patients or patients with shorter femoral neck.


Assuntos
Parafusos Ósseos , Fraturas do Fêmur , Humanos , Parafusos Ósseos/efeitos adversos , Fenômenos Biomecânicos , Fixadores Internos , Fixação Interna de Fraturas , Fraturas do Fêmur/etiologia , Peso Corporal
16.
PLoS One ; 19(4): e0301230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593122

RESUMO

BACKGROUND: Instrumented gait analysis (IGA) has been around for a long time but has never been shown to be useful for improving patient outcomes. In this study we demonstrate the potential utility of IGA by showing that machine learning models are better able to estimate treatment outcomes when they include both IGA and clinical (CLI) features compared to when they include CLI features alone. DESIGN: We carried out a retrospective analysis of data from ambulatory children diagnosed with cerebral palsy who were seen at least twice at our gait analysis center. Individuals underwent a variety of treatments (including no treatment) between sequential gait analyses. We fit Bayesian Additive Regression Tree (BART) models that estimated outcomes for mean stance foot progression to demonstrate the approach. We built two models: one using CLI features only, and one using CLI and IGA features. We then compared the models' performance in detail. We performed similar, but less detailed, analyses for a number of other outcomes. All results were based on independent test data from a 70%/30% training/testing split. RESULTS: The IGA model was more accurate than the CLI model for mean stance-phase foot progression outcomes (RMSEIGA = 11∘, RMSECLI = 13∘) and explained more than 1.5 × as much of the variance (R2IGA = .45, R2CLI = .28). The IGA model outperformed the CLI model for every level of treatment complexity, as measured by number of simultaneous surgeries. The IGA model also exhibited superior performance for estimating outcomes of mean stance-phase knee flexion, mean stance-phase ankle dorsiflexion, maximum swing-phase knee flexion, gait deviation index (GDI), and dimensionless speed. INTERPRETATION: The results show that IGA has the potential to be useful in the treatment planning process for ambulatory children diagnosed with cerebral palsy. We propose that the results of machine learning outcome estimators-including estimates of uncertainty-become the primary IGA tool utilized in the clinical process, complementing the standard medical practice of conducting a through patient history and physical exam, eliciting patient goals, reviewing relevant imaging data, and so on.


Assuntos
Paralisia Cerebral , Transtornos Neurológicos da Marcha , Criança , Humanos , Análise da Marcha , Estudos Retrospectivos , Paralisia Cerebral/cirurgia , Teorema de Bayes , Marcha , Amplitude de Movimento Articular , Imunoglobulina A , Fenômenos Biomecânicos , Transtornos Neurológicos da Marcha/terapia
17.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570505

RESUMO

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Assuntos
Caenorhabditis elegans , Neuroglia , Animais , Caenorhabditis elegans/genética , Astrócitos , Fenômenos Biomecânicos , Proteostase , Matriz Extracelular/metabolismo , Junções Intercelulares
18.
J R Soc Interface ; 21(213): 20230592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593841

RESUMO

The mechanical characterization of the oesophagus is essential for applications such as medical device design, surgical simulations and tissue engineering, as well as for investigating the organ's pathophysiology. However, the material response of the oesophagus has not been established ex vivo in regard to the more complex aspects of its mechanical behaviour using fresh, human tissue: as of yet, in the literature, only the hyperelastic response of the intact wall has been studied. Therefore, in this study, the layer-dependent, anisotropic, visco-hyperelastic behaviour of the human oesophagus was investigated through various mechanical tests. For this, cyclic tests, with increasing stretch levels, were conducted on the layers of the human oesophagus in the longitudinal and circumferential directions and at two different strain rates. Additionally, stress-relaxation tests on the oesophageal layers were carried out in both directions. Overall, the results show discrete properties in each layer and direction, highlighting the importance of treating the oesophagus as a multi-layered composite material with direction-dependent behaviour. Previously, the authors conducted layer-dependent cyclic experimentation on formalin-embalmed human oesophagi. A comparison between the fresh and embalmed tissue response was carried out and revealed surprising similarities in terms of anisotropy, strain-rate dependency, stress-softening and hysteresis, with the main difference between the two preservation states being the magnitude of these properties. As formalin fixation is known to notably affect the formation of cross-links between the collagen of biological materials, the differences may reveal the influence of cross-links on the mechanical behaviour of soft tissues.


Assuntos
Esôfago , Projetos de Pesquisa , Humanos , Estresse Mecânico , Esôfago/fisiologia , Anisotropia , Fenômenos Biomecânicos , Resistência à Tração
19.
Prosthet Orthot Int ; 48(2): 213-222, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595180

RESUMO

BACKGROUND: Nonsurgical guidelines recommend implementing a correctly fitted bra when managing back pain among larger breasted women. Achieving this is challenging with current bra solutions, sizing principles, and fitting approaches. Persistent wearing of an ill-fitting bra can cause negative health implications, including non-specific back pain. OBJECTIVES: This study investigated immediate and short-term biomechanical and pain responses to changing breast support garment among larger breasted women with non-specific back pain. METHODS: Participants (n = 24) performed a standing task, drop jumps, and seated typing tasks while bra and spinal kinematic data were recorded. Five breast support conditions were assessed: participants' usual bra (control), a professionally fitted bra in the immediate term (standard) and after 4 weeks wear (standard28), and a bra with an alternative design, measurement, and fitting approach in both the immediate term (alternative) and after 4 weeks wear (alternative28). A bra fit assessment and clinical pain/disability questionnaires were included. RESULTS: All participants failed the bra fit assessment in the control bra, compared with 87.5% (n = 21) in the standard and 4.2% (n = 1) in the alternative bras. The standard28 and alternative28 bras provided symptomatic relief, with the alternative28 bra improving a greater number of outcome measures. Reduced nipple-sternal-notch distance was observed only in the alternative28 bra condition. CONCLUSIONS: Symptomatic relief may be associated with the resting position of the breast tissue on the anterior chest wall. The alternative bra may provide potential clinical benefit if implemented as part of a nonsurgical or conservative pain management strategy. Alternative breast support garments should be considered to provide solutions to the problems associated with traditional bras.


Assuntos
Mama , Vestuário , Feminino , Humanos , Mama/fisiologia , Dor nas Costas/terapia , Inquéritos e Questionários , Fenômenos Biomecânicos
20.
J Biomech ; 166: 112052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38560959

RESUMO

An important performance determinant in wheelchair sports is the power exchanged between the athlete-wheelchair combination and the environment, in short, mechanical power. Inertial measurement units (IMUs) might be used to estimate the exchanged mechanical power during wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in wheelchair sports, a well-founded and unambiguous theoretical framework is required that follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals. First, to present a theoretical framework that supports the use of IMUs to estimate power output via power balance equations. Second, to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based on experimental data. Mechanical power during straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU and was subsequently compared to optical motion capture data serving as a reference. IMU-based power was calculated from rolling resistance (estimated from drag tests) and change in kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results reveal no significant difference between reference power values and the proposed IMU-based power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9-1.7% underestimation, over time, IMU-based power will be slightly underestimated as well. To conclude, the theoretical framework and the resulting IMU model seems to provide acceptable estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports) practice, and it is an important first step towards feasible power estimations in all wheelchair sports situations.


Assuntos
Esportes , Cadeiras de Rodas , Humanos , Fenômenos Biomecânicos , Aceleração , Teste de Esforço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...