Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.748
Filtrar
1.
Luminescence ; 39(3): e4703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433325

RESUMO

Transition metal dichalcogenides (TMDCs) are versatile two-dimensional (2D) nanomaterials used in biosensing applications due to their excellent physical and chemical properties. Due to biomaterial target properties, biosensors' most significant challenge is improving their sensitivity and stability. In environmental analysis, TMDCs have demonstrated exceptional pollutant detection and removal capabilities. Their high surface area, tunable electronic properties, and chemical reactivity make them ideal for sensors and adsorbents targeting various contaminants, including heavy metals, organic pollutants, and emerging contaminants. Furthermore, their unique electronic and optical properties enable sensitive detection techniques, enhancing our ability to monitor and mitigate environmental pollution. In the food analysis, TMDCs-based nanomaterials have shown remarkable potential in ensuring food safety and quality. These nanomaterials exhibit high specificity and sensitivity for detecting contaminants, pathogens, and adulterants in various food matrices. Their integration into sensor platforms enables rapid and on-site analysis, reducing the reliance on centralized laboratories and facilitating timely interventions in the food supply chain. In biomedical studies, TMDCs-based nanomaterials have demonstrated significant strides in diagnostic and therapeutic applications. Their biocompatibility, surface functionalization versatility, and photothermal properties have paved the way for novel disease detection, drug delivery, and targeted therapy approaches. Moreover, TMDCs-based nanomaterials have shown promise in imaging modalities, providing enhanced contrast and resolution for various medical imaging techniques. This article provides a comprehensive overview of 2D TMDCs-based biosensors, emphasizing the growing demand for advanced sensing technologies in environmental, food, and biomedical analysis.


Assuntos
Poluentes Ambientais , Nanoestruturas , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Eletrônica
2.
Front Public Health ; 12: 1356459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425464

RESUMO

Background: Studies on the association between mixed exposure to common pollutants such as cadmium (Cd), cobalt (Co), lead (Pb), and polycyclic aromatic hydrocarbons (PAHs) with Systemic Immune Inflammatory Index (SII), a novel hemocyte-based inflammatory marker, have not been reported. This study explored the relationship between co-exposure to Cd, Co, Pb, PAHs, and SII. Methods: In this study, we used data from the National Health and Nutrition Examination Survey and enrolled adults with complete information on Cd, Co, Pb, PAHs, and SII. The linear regression was used to analyze the association of single pollutants with SII. Furthermore, a Bayesian Kernel Machine Regression analysis and a generalized weighted quantile sum regression analysis were used to analyze the association between mixed exposure to Cd, Co, Pb, and six PAHs and SII. We also separated males and females and analyzed the different effects of pollutants on SII, respectively. Results: 5,176 participants were included in the study. After adjusting for age, gender, race, education, smoking, drinking, physical activity, and sedentary, Cd, Co, 1-OHN, 2-OHN and 2-OHF were positive with SII in the total population. Compared with the 50th percentile, the joint effect of pollutants on SII was positive. In the total population, males, and females, the top contaminant with the highest effect weights on SII were Co, Cd, and 1-OHN, respectively. The result of interaction analysis showed that the low concentrations of Cd had an elevation effect on SII in males. Conclusion: This study found a positive association of mixed exposure to Cd, Co, Pb, and six PAHs with SII, which occurred mainly in females.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Masculino , Feminino , Cádmio , Cobalto , Inquéritos Nutricionais , Teorema de Bayes , Chumbo , Inflamação
4.
Huan Jing Ke Xue ; 45(2): 844-853, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471923

RESUMO

Pharmaceutical industry wastewater contains a large number of emerging pollutants such as antibiotics, antibiotic resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). The present biological water treatment processes cannot effectively remove these pollutants. Eventually, they are discharged into various water bodies or penetrate into soil with the effluent, causing environmental pollution and affecting human health. Therefore, exploring the pollution characteristics of antibiotics, ARBs, and ARGs in pharmaceutical wastewater and knowing the methods to detect and control antibiotic resistance pollution in wastewater are crucial for reducing the contamination of antibiotics and ARGs and assessing the ecological risks of antibiotic resistance. Aiming at the problem of antibiotic resistance pollution in a pharmaceutical wastewater treatment plant (PWWTPs), the pollution status of antibiotics, ARBs, and ARGs in pharmaceutical wastewater was discussed. Different assessment methods of antibiotic resistance in pharmaceutical wastewater were summarized. Finally, the wastewater treatment technologies commonly used to remove antibiotics and ARGs in PWWTPs were summarized in order to provide a theoretical basis for the ecological risk assessment and scientific control of antibiotics and ARGs in the environment.


Assuntos
Poluentes Ambientais , Águas Residuárias , Humanos , Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Preparações Farmacêuticas
5.
Huan Jing Ke Xue ; 45(2): 1098-1106, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471947

RESUMO

In order to study the safe utilization of acid cadmium (Cd) contaminated soil, light and moderate Cd-contaminated farmland in Shangluo, Shaanxi Province was taken as the research object, and lime, biochar, and calcium magnesium phosphate fertilizer were applied. Through the wheat-maize rotation experiment, the safe utilization effect of different amounts of passivator on Cd-contaminated soil was explored, and the best ratio of passivator was selected. The results showed that: ① the soil quality could be improved to varying degrees by applying the passivator. ② After the application of amendments, the grain yield of wheat and maize increased to different degrees. ③ The lime 2 340 kg·hm-2 (C3) treatment had the best effect, which increased the soil pH of wheat and corn by 1.453 and 1.717 units, respectively, and reduced the available Cd content by 34.38% and 30.20%, respectively. ④ The application of biochar 1 800 kg·hm-2 (B2) treatment had the best effect on reducing the Cd contents in wheat roots, straws, and grains, which were significantly reduced by 53.60%, 38.86%, and 52.96%, respectively, compared with that in CK. The Cd content in wheat grains was reduced to 0.09 mg·kg-1, which was lower than the limit value of wheat Cd (0.1 mg·kg-1) specified in the "National food safety standard food pollutant limit" (GB 2762-2017). The application of the biochar 1 260 kg·hm-2 (B1) treatment had the best comprehensive effect on reducing the Cd contents of maize roots, straws, and grains, which were significantly reduced by 43.74%, 53.20%, and 94.57%, respectively, compared with that in CK. The Cd content of maize grains was reduced to 0.001 9 mg·kg-1, which was far lower than the limit value of maize Cd (0.1 mg·kg-1) specified in the "National food safety standard food pollutant limit" (GB 2762-2017). Therefore, under the conditions of the field experiment, considering the influence of various indexes, biochar had the best effect on farmland soil in the wheat-maize rotation area with mild to moderate Cd pollution.


Assuntos
Compostos de Cálcio , Poluentes Ambientais , Oryza , Óxidos , Poluentes do Solo , Fazendas , Cádmio/análise , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Triticum
6.
Huan Jing Ke Xue ; 45(2): 1161-1172, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471953

RESUMO

With the vigorous development of agriculture in China, plastic mulch film and pesticides are widely used in agricultural production. However, the accumulation of microplastics (formed by the degradation of plastic mulch film) and pesticides in soil has also caused many environmental problems. At present, the environmental biological effects of microplastics or pesticides have been reported, but there are few studies on the combined effects on crop growth and the rhizosphere soil bacterial community. Therefore, in this study, the high density polyethylene microplastics (HDPE, 500 mesh) were designed to be co-treated with sulfonylurea herbicide chlorimuron-ethyl to study their effects on soybean growth. In addition, the effects of the combined stress of HDPE and chlorimuron-ethyl on soybean rhizosphere soil bacterial community diversity, structure composition, microbial community network, and soil function were investigated using high-throughput sequencing technology, interaction network, and PICRUSt2 function analysis to clarify the combined toxicity of HDPE and chlorimuron-ethyl to soybean. The results showed that the half-life of chlorimuron-ethyl in soil was prolonged by the 1% HDPE treatment (from 11.5 d to 14.3 d), and the combined stress of HDPE and chlorimuron-ethyl had more obvious inhibition effects on soybean growth than that of the single pollutant or control. The HiSeq 2 500 sequencing showed that the rhizosphere bacterial community of soybean was composed of 20 phyla and 312 genera under combined stress, the number of phyla and genera was significantly less than that of the control and single pollutant treatment, and the relative abundances of bacteria with potential biological control and plant growth-promoting characteristics (such as Nocardioides and Sphingomonas) were reduced. Alpha diversity analysis showed that the combined stress significantly reduced the richness and diversity of the soybean rhizosphere bacterial community, and Beta diversity analysis showed that the combined stress significantly changed the structure of the bacterial community. The dominant flora of the rhizosphere bacterial community were regulated, and the abundances of secondary functional layers such as amino acid metabolism, energy metabolism, and lipid metabolism were reduced under combined stress by the analysis of LEfSe and PICRUSt2. It was inferred from the network analysis that the combined stress of HDPE and chlorimuron-ethyl reduced the total number of connections and network density of soil bacteria, simplified the network structure, and changed the important flora species to maintain the stability of the network. The results above indicated that the combined stress of HDPE and chlorimuron-ethyl significantly affected the growth of soybean and changed the rhizosphere bacterial community structure, soil function, and network structure. Compared with that of the single pollutant treatment, the potential risk of combined stress was greater. The results of this study can provide guidance for evaluating the ecological risks of polyethylene microplastics and chlorimuron-ethyl and for the remediation of contaminated soil.


Assuntos
Poluentes Ambientais , Herbicidas , Pirimidinas , Compostos de Sulfonilureia , Polietileno/metabolismo , Polietileno/farmacologia , Rizosfera , Microplásticos , Plásticos , Bactérias , Solo , Microbiologia do Solo
7.
Huan Jing Ke Xue ; 45(2): 1173-1184, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471954

RESUMO

The effect of microplastics on the ecological environment and human health has become a topical issue, and research on the risks and harmful effects of MPs on human health in particular has attracted widespread attention. Due to the characteristics of small size, low degradability, and easy migration, MPs continuously migrate from the environment to the human body, and their main exposure pathways are oral ingestion, inhalation, and dermal contact, with the main exposure media being food, drinking water, dust, personal care products, etc. MPs have been detected in organs, fluids, and excreta of digestive, respiratory, cardiovascular, reproductive systems, etc. The abundance range of MPs in the human body is 0-1 206.94 particles per gram. After entering the human body, MPs can cause cytotoxicity, mitochondrial toxicity, DNA damage, cell membrane damage, and other effects on human cells and organs, leading to serious consequences such as local inflammation, ecological imbalance, metabolic disorders, etc., in various systems. Owing to their small specific surface area, they can also adsorb pollutants such as heavy metals, organic pollutants, antibiotics, pathogens, and harmful microorganisms, causing combined toxicity and immunotoxicity. In the end, we highlighted general deficiencies in existing studies and provided directions for future research on the influence of MPs on human health.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
8.
Epidemiol Prev ; 48(1): 12-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482782

RESUMO

BACKGROUND: there is growing evidence that exposure to environmental pollutants affects health, including mortality, chronic diseases, and acute diseases. The World Health Organisation has recently revised downwards the safety thresholds for exposure to environmental pollutants. The City of Milan (CoM) has particularly high levels of pollution; this is due both to the presence of various emission sources and to climatic and orographic conditions. OBJECTIVES: to describe the health effects of exposure to pollutants, measured by deaths due to environmental exposure to NO2, PM10, and PM2.5 in 2019. DESIGN: observational study. Using a pollutant concentration estimation model, annual mean values of NO2, PM10, and PM2.5 were estimated for the CoM in 2019. The number of deaths attributable to each exposure was estimated using risk functions available in the literature; the values recommended by the new World Health Organisation guidelines were used as counterfactual exposure limits. SETTING AND PARTICIPANTS: the population assisted by the Agency for Health Protection of Milan and resident in the CoM on 01.01.2019, aged 30 years or older. The place of residence was georeferenced and the population was followed up until 31.12.2019. Deaths and their causes were obtained from the Causes of Death Registry. MAIN OUTCOME MEASURES: deaths attributable to exposure from non-accidental causes, cardiovascular diseases, respiratory diseases, and lung cancer were estimated. RESULTS: in 2019, the estimated annual average level of NO2 was 36.6 µg/m3, that of PM10 was 24.9 µg/m3, and that of PM2.5 was 22.4 µg/m3, with levels varying across the city area. Concerning exposure to NO2, in 2019 10% of deaths for natural causes were estimated to be attributable to annual mean levels of NO2 above 10 µg/m3. As regard PM2.5, 13% of deaths for natural causes and 18% of deaths from lung cancer were attributable to an annual mean level above 5 µg/m3. The impact of exposure to particulate matter on mortality does not seem to be the same in all the areas of the CoM. CONCLUSIONS: the health impact of exposure to airborne particulate matter in the CoM population is high. It is important that citizens, policy-makers, and stakeholders address this issue, because of its impact on both health and healthcare costs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Neoplasias Pulmonares , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Dióxido de Nitrogênio/efeitos adversos , Itália/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Neoplasias Pulmonares/epidemiologia
9.
Water Sci Technol ; 89(5): 1107-1123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483488

RESUMO

In this study, we report a facile hydrothermal synthesis of strontium-doped SnS nanoflowers that were used as a catalyst for the degradation of antibiotic molecules in water. The prepared sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). The photocatalytic ability of the strontium-doped SnS nanoflowers was evaluated by studying the degradation of metronidazole in an aqueous solution under photocatalytic conditions. The degradation study was conducted for a reaction period of 300 min at neutral pH, and it was found that the degradation of metronidazole reached 91%, indicating the excellent photocatalytic performance of the catalyst. The influence of experimental parameters such as catalyst dosage, initial metronidazole concentration, initial reaction pH, and light source nature was optimized with respect to metronidazole degradation over time. The reusability of the strontium-doped SnS nanoflowers catalyst was investigated, and its photocatalytic efficiency remained unchanged even after four cycles of use.


Assuntos
Poluentes Ambientais , Metronidazol , Antibacterianos , Águas Residuárias , Fotólise , Estrôncio , Água
10.
Water Sci Technol ; 89(5): 1155-1178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483491

RESUMO

Aerobic granular sludge (AGS) in continuous-flow reactors (CFRs) has attracted significant interest, with notable progress in research and application over the past two decades. Cumulative studies have shown that AGS-CFRs exhibit comparable morphology, settleability, and pollutant removal efficiency to AGS cultivated in sequencing batch reactors, despite their smaller particle sizes. Shear force and selection pressure are the primary drivers of granulation. While not mandatory for granulation, feast/famine conditions play a crucial role in ensuring long-term stability and nutrient removal. Additionally, bioaugmentation can facilitate the granulation process. Furthermore, this paper comprehensively assesses the application of AGS-CFRs in full-scale wastewater treatment plants (WWTPs). Currently, AGS-CFRs have been implemented in nine WWTPs, encompassing two distinct processes. Hydrocyclone-based densified activated sludge significantly enhances sludge density, settleability, and biological phosphorus removal efficiency, thus increasing treatment capacity. The microaerobic-aerobic configuration with internal separators can induce granulation, ensuring long-term stability, eliminating the need for external clarifiers, and reducing land and energy requirements. This review demonstrates the high potential of AGS-CFRs for intensifying existing WWTPs with minimal retrofitting needs. However, further research is required in granulation mechanisms, long-term stability, and nutrient removal to promote the widespread adoption of AGS.


Assuntos
Poluentes Ambientais , Esgotos , Águas Residuárias , Nutrientes , Tamanho da Partícula
11.
Water Sci Technol ; 89(5): 1211-1239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483494

RESUMO

Environmental pollution control in the growing world is a challenging task for all the countries in order to keep the environmental sustainability. Biochar, a processed carbon material, draws a significant attention in the field of environmental remediation, as of its active functional groups that help remove environmental pollutants to a level insignificant to cause hazardous effects. As such, there is an increasing interest developed to promote highly productive biochar for exploring environmental engineering aspects. There is limited comprehensive literature available for understanding biochar science and its potential applications under an umbrella. This review was set to fill this knowledge gap by discussing key points related to biochar, its novel engineering aspects and potential environmental applications. Therefore, this overview tends to summarize and discuss biochar, its fundamentals, engineering aspects commonly used modifications and the potential applications of biochar in water treatment with an intention of addressing the importance of biochar for environmental remediation process. This overview will be useful for researchers, policy-makers and stakeholders to plan and review relevant scientific works in order to produce customized biochar for future environmental applications.


Assuntos
Carbono , Carvão Vegetal , Poluentes Ambientais , Biomassa , Poluição Ambiental
12.
Environ Monit Assess ; 196(4): 343, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438765

RESUMO

Drinking water quality deteriorates rapidly due to anthropogenic activities and rapid population growth. These activities, in developing countries, will lead to water scarcity. In Pakistan, 70% of the population has no access to safe water, and people use canal water to drink. This study performed hydrochemical, hydrogeological, and cancer risk analyses on Tahsil Hasilpur, Bahawalpur, Pakistan. Thirteen tube wells were selected for groundwater and borehole log study. Twenty-two drinking water quality parameters were analyzed using standard methods and quality checks. The borehole data (2D and 3D) shows the abundance of sand (fine and coarse) with some uniformities, which changes the groundwater quality. The results of water quality parameters show that the concentration of TDS (2064-11,159 mg/L), Cl-1 (213-4917 mg/L), As+3 (0.048-0.158 mg/L), Pb+2 (1.294-1.673 mg/L), and Cd+2 (0.008-0.053 mg/L) were beyond guideline values. The statistical analysis showed that the parameters have a moderate to strong correlation (Pearson correlation), which may be due to the same origin (ANOVA). The principal component analysis and cluster analysis confirm the multiple sources of pollutants in the groundwater of the study area. The Piper, Durov, Stiff, and Scholler diagrams confirm that the groundwater system has an abundance of Ca+2 and Mg+2 with Cl-1. The Gibbs diagram showed that the groundwater is not saturated and tends to dissolve more minerals. The hazard quotient values are above 1.0, which indicates noncancer risk severity. The HQ trend was As+3 > Pb+2 > Cd+2 > Ni+2 > Cu+2 > Cr+2 > Zn+2 > Fe+2. The cancer risk values showed that 3-5 people/100 population were exposed to cancer risk. The trend of CR was As+3 > Cd+2 > Cr+2 > Pb+2 > Ni+2. The GIP mapping of pollutants showed that the concentration of pollutants near the canals was high compared to the locations away from the canal. The overall groundwater quality is alarming and needs immediate government attention.


Assuntos
Água Potável , Poluentes Ambientais , Água Subterrânea , Neoplasias , Humanos , Efeitos Antropogênicos , Paquistão , Cádmio , Chumbo , Monitoramento Ambiental , Neoplasias/epidemiologia , Medição de Risco
13.
Exp Dermatol ; 33(3): e15048, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439204

RESUMO

As the largest organ, the skin provides the first line of defence against environmental pollutants. Different pollutants have varied damage to the skin due to their own physical-chemical properties. A previous epidemiological study by our team revealed that eczema was positively correlated with different air pollutants. However, the mechanism of action from different pollutants on the skin is less known. In this work, the differences among the genotoxicity, intracellular reactive oxygen species, and barrier-related parameters caused by two kinds of air pollutants, that is, S1650b and carbon black (CB) were investigated by Western blot, TUNEL, comet assay and RNA-sequences. The results indicated that both S1650b and CB caused DNA damage of keratinocytes. With the content of lipophilic polycyclic aromatic hydrocarbons (PAH), S1650b leaked into the keratinocytes easily, which activated the aromatic hydrocarbon receptor (AhR) in keratinocytes, leading to worse damage to barrier-related proteins than CB. And CB-induced higher intracellular ROS than S1650b due to the smaller size which make it enter the keratinocytes easier. RNA-sequencing results revealed that S1650b and CB both caused DNA damage of keratinocytes, and the intervention of S1650b significantly upregulated AhR, cytochrome oxidase A1 and B1 (CYP1A1 and CYP1B1) genes, while the results showed oppositely after CB intervention. The mechanism of keratinocyte damage caused by different air particle pollutants in this study will help to expand our understanding on the air pollutant-associated skin disease at cell levels.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Fuligem , Material Particulado/toxicidade , Queratinócitos , Dano ao DNA , Estresse Oxidativo , Poluentes Atmosféricos/toxicidade , RNA
14.
Sci Rep ; 14(1): 5385, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443419

RESUMO

Alzheimer's disease (AD) is the most common type of dementia with millions of affected patients worldwide. Currently, there is still no cure and AD is often diagnosed long time after onset because there is no clear diagnosis. Thus, it is essential to study the physiology and pathogenesis of AD, investigating the risk factors that could be strongly connected to the disease onset. Despite AD, like other complex diseases, is the result of the combination of several factors, there is emerging agreement that environmental pollution should play a pivotal role in the causes of disease. In this work, we implemented an Artificial Intelligence model to predict AD mortality, expressed as Standardized Mortality Ratio, at Italian provincial level over 5 years. We employed a set of publicly available variables concerning pollution, health, society and economy to feed a Random Forest algorithm. Using methods based on eXplainable Artificial Intelligence (XAI) we found that air pollution (mainly O 3 and N O 2 ) contribute the most to AD mortality prediction. These results could help to shed light on the etiology of Alzheimer's disease and to confirm the urgent need to further investigate the relationship between the environment and the disease.


Assuntos
Doença de Alzheimer , Poluentes Ambientais , Humanos , Inteligência Artificial , Doença de Alzheimer/etiologia , Aprendizado de Máquina , Poluição Ambiental
15.
Bull Environ Contam Toxicol ; 112(3): 46, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459996

RESUMO

Chlorinated benzenes (CBzs) are a group of organic pollutants, which have been industrially or unintentionally produced through various chemical and thermal processes. Studies on full congener profiles of CBzs in waste and environmental samples are relatively limited and not updated. In the present study, concentrations of 12 CBzs were determined in fly ash (FA) and bottom ash (BA) samples collected from one municipal waste incinerator (MWI) and one industrial waste incinerator (IWI) in northern Vietnam. Levels of Σ12CBzs were higher in bottom ash (median 25.3; range 1.59-45.7 ng/g) than in fly ash (median 7.30; range 1.04-30.0 ng/g). The CBz profiles were dominated by di- and tri-chlorinated congeners with the major congeners as 1,2,4-TCB, 1,2,3-TCB, 1,2-DCB, and 1,3-DCB. However, CBz profiles varied greatly between sample types and incinerators, implying differences in input materials, formation pathways, and pollutant behaviors. Incomplete combustion is possibly responsible for high levels of CBzs in industrial bottom ash. The emission factors of Σ12CBzs ranged from 21 to 600 µg/ton for fly ash and from 190 to 4570 µg/ton for bottom ash, resulting in annual emissions of about 6 and 3 g/year for the IWI and MWI, respectively. Our results suggest additional investigations on industrial emission and environmental occurrence of all 12 CBzs rather than solely focusing on regulated congeners like hexachlorobenzene and pentachlorobenzene.


Assuntos
Cinza de Carvão , Poluentes Ambientais , Cinza de Carvão/análise , Vietnã , Poluentes Ambientais/análise , Incineração , Resíduos Industriais/análise
16.
Environ Health Perspect ; 132(3): 37003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445893

RESUMO

BACKGROUND: Air pollution risk assessments do not generally quantify health impacts using multipollutant risk estimates, but instead use results from single-pollutant or copollutant models. Multipollutant epidemiological models account for pollutant interactions and joint effects but can be computationally complex and data intensive. Risk estimates from multipollutant studies are therefore challenging to implement in the quantification of health impacts. OBJECTIVES: Our objective was to conduct a case study using a developmental multipollutant version of the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to estimate the health impact associated with changes in multiple air pollutants using both a single and multipollutant approach. METHODS: BenMAP-CE was used to estimate the change in the number of pediatric asthma emergency department (ED) visits attributable to simulated changes in air pollution between 2011 and 2025 in Atlanta, Georgia, applying risk estimates from an epidemiological study that examined short-term single-pollutant and multipollutant (with and without first-order interactions) exposures. Analyses examined individual pollutants (i.e., ozone, fine particulate matter, carbon monoxide, nitrogen dioxide (NO2), sulfur dioxide, and particulate matter components) and combinations of these pollutants meant to represent shared properties or predefined sources (i.e., oxidant gases, secondary pollutants, traffic, power plant, and criteria pollutants). Comparisons were made between multipollutant health impact functions (HIF) and the sum of single-pollutant HIFs for the individual pollutants that constitute the respective pollutant groups. RESULTS: Photochemical modeling predicted large decreases in most of the examined pollutant concentrations between 2011 and 2025 based on sector specific (i.e., source-based) estimates of growth and anticipated controls. Estimated number of avoided asthma ED visits attributable to any given multipollutant group were generally higher when using results from models that included interaction terms in comparison with those that did not. We estimated the greatest number of avoided pediatric asthma ED visits for pollutant groups that include NO2 (i. e., criteria pollutants, oxidants, and traffic pollutants). In models that accounted for interaction, year-round estimates for pollutant groups that included NO2 ranged from 27.1 [95% confidence interval (CI): 1.6, 52.7; traffic pollutants] to 55.4 (95% CI: 41.8, 69.0; oxidants) avoided pediatric asthma ED visits. Year-round results using multipollutant risk estimates with interaction were comparable to the sum of the single-pollutant results corresponding to most multipollutant groups [e.g., 52.9 (95% CI: 43.6, 62.2) for oxidants] but were notably lower than the sum of the single-pollutant results for some pollutant groups [e.g., 77.5 (95% CI: 66.0, 89.0) for traffic pollutants]. DISCUSSION: Performing a multipollutant health impact assessment is technically feasible but computationally complex. It requires time, resources, and detailed input parameters not commonly reported in air pollution epidemiological studies. Results estimated using the sum of single-pollutant models are comparable to those quantified using a multipollutant model. Although limited to a single study and location, assessing the trade-offs between a multipollutant and single-pollutant approach is warranted. https://doi.org/10.1289/EHP12969.


Assuntos
Asma , Poluentes Ambientais , Criança , Humanos , Georgia/epidemiologia , Asma/epidemiologia , Oxidantes , Material Particulado
17.
Sci Rep ; 14(1): 5502, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448471

RESUMO

Phytoremediation is a cost-effective and environmentally friendly method, offering a suitable alternative to chemical and physical approaches for the removal of pollutants from soil. This research explored the phytoremediation potential of Alhagi camelorum, a plant species, for total petroleum hydrocarbons (TPHs) and heavy metals (HMs), specifically lead (Pb), chromium (Cr), nickel (Ni), and cadmium (Cd), in oil-contaminated soil. A field-scale study spanning six months was conducted, involving the cultivation of A. camelorum seeds in a nursery and subsequent transplantation of seedlings onto prepared soil plots. Control plots, devoid of any plants, were also incorporated for comparison. Soil samples were analyzed throughout the study period using inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs and gas chromatography‒mass spectrometry (GC‒MS) for TPHs. The results showed that after six months, the average removal percentage was 53.6 ± 2.8% for TPHs and varying percentages observed for the HMs (Pb: 50 ± 2.1%, Cr: 47.6 ± 2.5%, Ni: 48.1 ± 1.6%, and Cd: 45.4 ± 3.5%). The upward trajectory in the population of heterotrophic bacteria and the level of microbial respiration, in contrast to the control plots, suggests that the presence of the plant plays a significant role in promoting soil microbial growth (P < 0.05). Moreover, kinetic rate models were examined to assess the rate of pollutant removal. The coefficient of determination consistently aligned with the first-order kinetic rate model for all the mentioned pollutants (R2 > 0.8). These results collectively suggest that phytoremediation employing A. camelorum can effectively reduce pollutants in oil-contaminated soils.


Assuntos
Poluentes Ambientais , Fabaceae , Petróleo , Cádmio , Biodegradação Ambiental , Chumbo , Cromo , Níquel , Solo
18.
Cell Mol Biol Lett ; 29(1): 33, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448800

RESUMO

Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.


Assuntos
Poluentes Ambientais , Microbiota , Neoplasias , Humanos , Receptores de Hidrocarboneto Arílico , Carcinogênese , Microambiente Tumoral
19.
PLoS One ; 19(3): e0291460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452117

RESUMO

In air pollution studies, the correlation analysis of environmental variables has usually been challenged by parametric diversity. Such variable variations are not only from the extrinsic meteorological conditions and industrial activities but also from the interactive influences between the multiple parameters. A promising solution has been motivated by the recent development of visibility graph (VG) on multi-variable data analysis, especially for the characterization of pollutants' correlation in the temporal domain, the multiple visibility graph (MVG) for nonlinear multivariate time series analysis has been verified effectively in different realistic scenarios. To comprehensively study the correlation between pollutant data and season, in this work, we propose a multi-layer complex network with a community division strategy based on the joint analysis of the atmospheric pollutants. Compared to the single-layer-based complex networks, our proposed method can integrate multiple different atmospheric pollutants for analysis, and combine them with multivariate time series data to obtain higher temporary community division for ground air pollutants interpretation. Substantial experiments have shown that this method effectively utilizes air pollution data from multiple representative indicators. By mining community information in the data, it successfully achieves reasonable and strong interpretive analysis of air pollution data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Estações do Ano , Material Particulado/análise
20.
J Transl Med ; 22(1): 253, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459561

RESUMO

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Assuntos
Poluentes Ambientais , MicroRNAs , Animais , Feminino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...