Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.095
Filtrar
1.
BMC Oral Health ; 24(1): 410, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566034

RESUMO

BACKGROUND: To clinically compare the effect of the conventional and the digital workflows on the passive fit of a screw retained bar splinting two inter-foraminal implants. METHODS: The current study was designed to be a parallel triple blinded randomised clinical trial. Thirty six completely edentulous patients were selected and simply randomized into two groups; conventional group (CG) and digital group (DG). The participants, investigator and outcome assessor were blinded. In the group (CG), the bar was constructed following a conventional workflow in which an open top splinted impression and a lost wax casting technology were used. However, in group (DG), a digital workflow including a digital impression and a digital bar milling technology was adopted. Passive fit of each bar was then evaluated clinically by applying the screw resistance test using the "flag" technique in the passive and non passive situations. The screw resistance test parameter was also calculated. Unpaired t-test was used for intergroup comparison. P-value < 0.05 was the statistical significance level. The study protocol was reviewed by the Research Ethics Committee in the author's university (Rec IM051811). Registration of the clinical trial was made on clinical trials.gov ID NCT05770011. An informed consent was obtained from all participants. RESULTS: Non statistically significant difference was denoted between both groups in all situations. In the passive situation, the mean ± standard deviation values were 1789.8° ± 20.7 and1786.1° ± 30.7 for the groups (CG) and (DG) respectively. In the non passive situation, they were 1572.8° ± 54.2 and 1609.2° ± 96.9. Regarding the screw resistance test parameter, they were 217° ± 55.3 and 176° ± 98.8. CONCLUSION: Conventional and digital fabrication workflows had clinically comparable effect on the passive fit of screw retained bar attachments supported by two dental implants.


Assuntos
Implantes Dentários , Boca Edêntula , Humanos , Fluxo de Trabalho , Técnica de Moldagem Odontológica , Parafusos Ósseos , Desenho Assistido por Computador , Prótese Dentária Fixada por Implante/métodos , Planejamento de Prótese Dentária
2.
BMJ Open ; 14(4): e078240, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569685

RESUMO

INTRODUCTION: Custom insoles are a routine treatment for many foot pathologies, and the use of computer-aided design and computer-aided manufacturing (CAD/CAM) is well established within clinical practice in the UK. The method of foot shape capture used to produce insoles varies throughout orthotic services. This trial aims to investigate the effectiveness of two common shape-capture techniques on patient-reported outcomes in people who require insoles for a foot or ankle pathology. METHODS AND ANALYSIS: This double-blinded randomised controlled trial will involve two intervention groups recruited from a National Health Service orthotic service. Participants will be randomly assigned to receive a pair of custom CAD/CAM insoles, manufactured either from a direct digital scan or a foam box cast of their feet and asked to wear the insoles for 12 weeks. The primary outcome measure will be the Foot Health Status Questionnaire (FHSQ) pain subdomain, recorded at baseline (immediately after receiving the intervention), 4, 8 and 12 weeks post intervention. Secondary outcome measures will include FHSQ foot function and foot health subdomains recorded at baseline, 4, 8 and 12 weeks. The Orthotic and Prosthetic User Survey Satisfaction with Device will be recorded at 12 weeks. The transit times associated with each arm will be measured as the number of days for each insole to be delivered after foot shape capture. Tertiary outcome measures will include participant recruitment and dropout rates, and intervention adherence measured as the daily usage of the insoles over 12 weeks. The change in FHSQ scores for the subdomains and insole usage will be compared between the groups and time points, and between group differences in time in transit, cost-time analysis and environmental impact will be compared. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Health Research Authority, London Stanmore Research Ethics Committee (22/LO/0579). Study findings will be submitted for publication in peer-reviewed journals, conference presentations and webinars. TRIAL REGISTRATION NUMBER: NCT05444192.


Assuntos
Doenças do Pé , Medicina Estatal , Humanos , , Projetos de Pesquisa , Dor , Desenho Assistido por Computador , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 227-233, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597082

RESUMO

OBJECTIVES: This clinical study aimed to assess the trueness of three intraoral scanners for the recor-ding of the maximal intercuspal position (MIP) to provide a reference for clinical practice. METHODS: Ten participants with good occlusal relationship and healthy temporomandibular joint were recruited. For the control group, facebow transferring procedures were performed, and bite registrations at the MIP were used to transfer maxillary and mandibular casts to a mechanical articulator, which were then scanned with a laboratory scanner to obtain digital cast data. For the experimental groups, three intraoral scanners (Trios 3, Carestream 3600, and Aoralscan 3) were used to obtain digital casts of the participants at the MIP following the scanning workflows endorsed by the corresponding manufacturers. Subsequently, measurement points were marked on the control group's digital casts at the central incisors, canines, and first molars, and corresponding distances between these points on the maxillary and mandibular casts were measured to calculate the sum of measured distances (DA). Distances between measurement points in the incisor (DI), canine (DC), and first molar (DM) regions were also calculated. The control group's maxillary and mandibular digital casts with the added measurement points were aligned with the experimental group's casts, and DA, DI, DC, and DM values of the aligned control casts were determined. Statistical analysis was performed on DA, DI, DC, and DM obtained from both the control and experimental groups to evaluate the trueness of the three intraoral scanners for the recording of MIP. RESULTS: In the control group, DA, DI, DC, and DM values were (39.58±6.40), (13.64±3.58), (14.91±2.85), and (11.03±1.56) mm. The Trios 3 group had values of (38.99±6.60), (13.42±3.66), (14.55±2.87), and (11.03±1.69) mm. The Carestream 3600 group showed values of (38.57±6.36), (13.56±3.68), (14.45±2.85), and (10.55±1.41) mm, while the Aoralscan 3 group had values of (38.16±5.69), (13.03±3.54), (14.23±2.59), and (10.90±1.54) mm. Analysis of variance revealed no statistically significant differences between the experimental and control groups for overall deviation DA (P=0.96), as well as local deviations DI (P=0.98), DC (P=0.96), and DM (P=0.89). CONCLUSIONS: With standardized scanning protocols, the three intraoral scanners demonstrated comparable trueness to traditional methods in recording MIP, fulfilling clinical requirements.


Assuntos
Incisivo , Dente Molar , Humanos , Mandíbula , Maxila , Desenho Assistido por Computador , Imageamento Tridimensional , Técnica de Moldagem Odontológica
4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 234-241, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597083

RESUMO

OBJECTIVES: This study proposes a chairside digital design and manufacturing method for band and loop space maintainers and preliminarily validates its clinical feasibility. METHODS: Clinical cases of 10 children requiring space maintenance caused by premature loss of primary teeth were collected. Intraoral scan data of the affected children were also collected to establish digital models of the missing teeth. Using a pediatric band and loop space maintainer design software developed by our research team, a rapid personalized design of band and loop structures was achieved, and a digital model of an integrated band and loop space maintainer was ultimately generated. A chairside space maintainer was manufactured through metal computer numerical control machining for the experimental group, whereas metal 3D printing in the dental laboratory was used for the control group. A model fitting assessment was conducted for the space maintainers of both groups, and senior pediatric dental experts were invited to evaluate the clinical feasibility of the space maintainers with regard to fit and stability using the visual analogue scale scoring system. Statistical analysis was also performed. RESULTS: The time spent in designing and manufacturing the 10 space maintainers of the experimental group was all less than 1 h. Statistical analysis of expert ratings showed that the experimental group outperformed the control group with regard to fit and stability. Both types of space maintainers met clinical requirements. CONCLUSIONS: The chairside digital design and manufacturing method for pediatric band and loop space maintainers proposed in this study can achieve same-day fitting of space maintainers at the first appointment, demonstrating good clinical feasibility and significant potential for clinical application.


Assuntos
Perda de Dente , Humanos , Criança , Impressão Tridimensional , Mantenedor de Espaço em Ortodontia , Desenho Assistido por Computador
5.
BMC Oral Health ; 24(1): 444, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609958

RESUMO

BACKGROUND: This study evaluated the shear bond strength (SBS) of two different polyetheretherketone (PEEK) and CAD-CAM materials after aging. METHODS: A total of 42 frameworks were designed and milled from 2 different PEEK discs (Copra Peek, P and BioHPP, B). P and B frameworks were divided into 3 subgroups (n = 7). 14 slices were prepared each from feldspathic ceramic (Vitablocs Mark II, VM), hybrid nanoceramic (Cerasmart, CS), and polymer-infiltrated ceramic (Vita Enamic, VE) blocks. After surface preparations, the slices were cemented to P and B surfaces. The samples were subjected to thermal aging (5000 cycles). SBS of all the samples was measured. Fractured surfaces were examined by SEM/EDX analysis. The Shapiro-Wilk, Two-way Robust ANOVA and Bonferroni correction tests were used to analyze the data (a = .05). RESULTS: Frameworks, ceramics, and frameworks x ceramics had significant differences (p < 0.05). The highest SBS value was seen in B-VM (p < 0.05). VM offered the highest SBS with both P and B. The differences between P-VM, P-CS, P-VE and B-CS and B-VE were insignificant (p > 0.05). According to EDX analysis, ytterbium and fluorine was seen in B content, unlike P. While VM and CS contained fluorine, barium, and aluminum; sodium and aluminum were observed in the VE structure. CONCLUSION: Bonding of P and B with VM offers higher SBS. VM, CS and VE did not make any difference in SBS for P, however VM showed a significant difference for B.


Assuntos
Alumínio , Benzofenonas , Flúor , Polímeros , Humanos , Polietilenoglicóis , Desenho Assistido por Computador , Cetonas
6.
BMC Oral Health ; 24(1): 415, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575886

RESUMO

BACKGROUND: The objective of the present study was to evaluate the reliability of an augmented reality drilling approach and a freehand drilling technique for the autotransplantation of single-rooted teeth. MATERIALS AND METHODS: Forty samples were assigned to the following surgical techniques for drilling guidance of the artificial sockets: A. augmented reality technique (AR) (n = 20) and B. conventional free-hand technique (FT) (n = 20). Then, two models with 10 teeth each were submitted to a preoperative cone-beam computed tomography (CBCT) scan and a digital impression by a 3D intraoral scan. Afterwards, the autotrasplanted teeth were planned in a 3D dental implant planning software and transferred to the augmented reality device. Then, a postoperative CBCT scan was performed. Data sets from postoperative CBCT scans were aligned to the planning in the 3D implant planning software to analize the coronal, apical and angular deviations. Student's t-test and Mann-Whitney non-parametric statistical analysis were used to analyze the results. RESULTS: No statistically significant differences were shown at coronal (p = 0.123) and angular (p = 0.340) level; however, apical deviations between AR and FT study groups (p = 0.008) were statistically significant different. CONCLUSION: The augmented reality appliance provides higher accuracy in the positioning of single-root autotransplanted teeth compared to the conventional free-hand technique.


Assuntos
Realidade Aumentada , Implantes Dentários , Cirurgia Assistida por Computador , Humanos , Transplante Autólogo , Reprodutibilidade dos Testes , Desenho Assistido por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional
7.
Clin Oral Investig ; 28(4): 220, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492074

RESUMO

OBJECTIVES: This in vitro study aims to compare the fracture resistance of three CAD/CAM materials used in endocrown restoration of interproximal defects in maxillary premolars. MATERIALS AND METHODS: 45 maxillary premolars extracted as part of orthodontic treatment were included. Following standardized root canal treatment, all teeth were prepared into Mesial-Occlusal (MO) cavity types. The samples were then randomly divided into three groups: LD [repaired with lithium disilicate glass ceramics (IPS e.max CAD)], VE [treated with polymer-infiltrated ceramics (Vita Enamic)], and LU [repaired with resin-based nanoceramics (Lava Ultimate)]. Axial static loading was applied using a universal testing machine at 1 mm/min until fracture, and fracture resistance and failure modes were recorded. RESULTS: Regarding Fracture Resistance Values (FRVs), the LD group exhibited significantly higher values than the other two groups, VE (P = 0.028) and LU (P = 0.005), which showed no significant difference (P = 0.778). On the other hand, regarding failure modes, the LD group had a higher prevalence of irreparable fractures compared to the other two groups, VE (P < 0.001) and LU (P < 0.001), which showed no significant difference. CONCLUSIONS: Although lithium disilicate glass ceramics exhibited higher FRVs, they had a lower repair probability. In contrast, polymer-infiltrated ceramics and resin-based nanoceramics contributed to tooth structure preservation. CLINICAL RELEVANCE: For maxillary premolars with interproximal defects following root canal treatment, resin ceramic composites are recommended for restoration to enhance abutment teeth protection.


Assuntos
Cerâmica , Coroas , Dente Pré-Molar , Teste de Materiais , Cerâmica/química , Porcelana Dentária/química , Resinas Compostas/química , Polímeros , Desenho Assistido por Computador , Análise do Estresse Dentário , Falha de Restauração Dentária
8.
BMC Oral Health ; 24(1): 374, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519905

RESUMO

OBJECTIVES: To compare the crown accuracy and time efficiency of a complete digital workflow, utilizing an auxiliary occlusal device and IO scanning, with a conventional workflow, for multiple implant-supported single crowns. MATERIALS AND METHODS: 24 patients with two adjacent posterior implants were included. 12 patients were randomly assigned to digital workflow group, involving intra-oral scanning with an auxiliary occlusal device and manufacture of customized abutments and zirconia single crowns (test group). The other 12 were assigned to the conventional workflow (control group), involving conventional impression and CAD-CAM crowns based on stone casts. Crown scanning was done before and after clinical adjustment using an intraoral scanner. Two 3D digital models were overlapped to assess dimension changes. Chair-side and laboratory times for the entire workflow were recorded and a linear mixed model and Independent-sample t tests were used for the statistical analysis. RESULTS: The maximum occlusal deviation was 279.67 ± 112.17 µm and 479.59 ± 203.63 µm in the test and control group, respectively (p < 0.001). The sizes of the occlusion adjustment areas were 12.12 ± 10.51 mm2 and 25.12 ± 14.14 mm2 in the test and control groups, respectively (p = 0.013). The mean laboratory time was 46.08 ± 5.45 and 105.92 ± 6.10 min in the test and control groups, respectively (p < 0.001).The proximal contact adjustment and mean chair-side time showed no statistically significant difference between two groups. CONCLUSIONS: A digital workflow for two implants-supported single crowns using an auxiliary device required fewer occlusal crown adjustments, and less laboratory time compared to conventional workflow. CLINICAL RELEVANCE: The use of auxiliary occlusal devices in IOS enhances the accuracy of virtual maxillomandibular relationship in extended edentulous spans. Consequently, employing a digital workflow for multiple implants-supported crowns using IO scanning and an auxiliary occlusal device proves to be a feasible, accurate and efficient approach.


Assuntos
Implantes Dentários , Planejamento de Prótese Dentária , Humanos , Fluxo de Trabalho , Coroas , Desenho Assistido por Computador
9.
J Contemp Dent Pract ; 25(1): 29-34, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514428

RESUMO

AIM: To evaluate the effect of thermo-mechanical cycling (TMC) on fracture resistance of different computer-aided design/computer-aided manufacture (CAD/CAM) crowns. MATERIALS AND METHODS: A total of 42 CAD/CAM crowns were fabricated on epoxy resin maxillary first premolar teeth and divided into three groups (n = 14) according to the material used: IPS e.max CAD (Ivoclar Vivadent) lithium disilicate (LD), Vita ENAMIC (VE) (VITA Zahnfabrik), Tetric CAD (Ivoclar Vivadent). Also, each group was subdivided into two equal subgroups according to TMC (n = 7). Subgroups (O) without TMC and subgroup (W) with TMC (5-55°C, 30 second, 75,000 cycles). All samples in each group were cemented with a universal bond (Tetric N bond universal) and adhesive resin cement (Variolink Esthetic DC) (Ivoclar Vivadent). Subsequently, the samples were loaded to failure in a universal testing machine at a crosshead speed of 1 mm/min, and the fracture pattern and the fracture resistance in each group were recorded. RESULTS: Fracture resistance was analyzed by one-way analysis of variance (ANOVA) test, followed by Tukey's post hoc test for pairwise comparison. Fracture resistance showed a significant difference between the tested groups before and after TMC; IPS e.max CAD has the highest value (1233.35 ± 97.72, 1165.73 ± 199.54 N) followed by Tetric CAD (927.62 ± 42.5, 992.04 ± 53.46 N) and Vita ENAMIC has lowest value (506.49 ± 74.24, 354.69 ± 90.36 N). CONCLUSION: Thermo-mechanical cycling affected the fracture resistance of both polymer-based CAD/CAM crowns. CLINICAL SIGNIFICANCE: For dental practitioners, both IPS e.max CAD and Tetric CAD can be used clinically for posterior teeth, providing satisfactory results and resistance to fracture. How to cite this article: Elmokadem MI, Haggag KM, Mohamed HR. Effect of Thermo-mechanical Cycling on Fracture Resistance of Different CAD/CAM Crowns: An In Vitro Study. J Contemp Dent Pract 2024;25(1):29-34.


Assuntos
Resinas Acrílicas , Resinas Compostas , Odontólogos , Poliuretanos , Papel Profissional , Humanos , Estética Dentária , Porcelana Dentária , Cerâmica/química , Coroas , Desenho Assistido por Computador , Teste de Materiais , Análise do Estresse Dentário , Falha de Restauração Dentária
10.
J Contemp Dent Pract ; 25(1): 79-84, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514436

RESUMO

AIM: This study aimed to investigate the effect of modified framework (MF) design on the fracture resistance of IPS e.max Press anterior single crown after thermocycling and cyclic loading. MATERIALS AND METHODS: Two types of IPS e.max Press frameworks were designed (n = 10); standard framework (SF) with a 0.5 mm uniform thickness and MF with a lingual margin of 1 mm in thickness and 2 mm in height connected to a proximal strut of 4 mm height and a 0.3 mm wide facial collar. The crowns were cemented to resin dies, subjected to 5,000 cycles of thermocycling, and loaded 10,000 cycles at 100 N. A universal testing machine was used to load specimens to fracture, and the modes of failure were determined. RESULTS: The mean and standard deviation (SD) of fracture resistance were 219.24 ± 110.00 N and 216.54 ±120.02 N in the SF and MF groups. Thus, there was no significant difference (p = 0.96). Mixed fracture was the most common failure mode in both groups. We found no statistically significant difference between the groups (p = 0.58). CONCLUSION: The MF design did not increase the fracture resistance of IPS e.max Press crown. CLINICAL SIGNIFICANCE: Framework design is an essential factor for the success of all-ceramic restorations and its modification might be regarded as an approach to increase fracture resistance. Furthermore, the modified design was evaluated in metal-ceramic or zirconia crowns while less attention was paid to the IPS e.max Press crowns. How to cite this article: Golrezaei M, Mahgoli HA, Yaghoobi N, et al. The Effect of Modified Framework Design on the Fracture Resistance of IPS e.max Press Crown after Thermocycling and Cyclic Loading. J Contemp Dent Pract 2024;25(1):79-84.


Assuntos
Porcelana Dentária , Falha de Restauração Dentária , Coroas , Cerâmica , Teste de Materiais , Análise do Estresse Dentário , Desenho Assistido por Computador , Planejamento de Prótese Dentária
11.
BMC Oral Health ; 24(1): 307, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443910

RESUMO

STATEMENT OF PROBLEM: CAD/CAM occlusal veneers have been developed for minimally invasive prosthetic restoration of eroded teeth. Marginal adaptation and fracture resistance are crucial for the long-term survivability and clinical success of such restorations. Virgilite-based lithium disilicate glass-ceramic is a newly introduced material with claims of high strength. However, constructing occlusal veneers from this material of varying thickness has not been investigated. PURPOSE: The current study aimed to assess the impact of CAD/CAM occlusal veneer thickness and materials on marginal adaptation and fracture resistance. MATERIALS AND METHODS: Thirty-two occlusal veneers were constructed and divided into two groups (n = 16) based on the CAD/CAM material into Brilliant Crios and CEREC Tessera. Each group was further subdivided into two subgroups (n = 8) according to the thickness: 0.6 and 0.9 mm. Occlusal veneers were bonded to epoxy resin dies. The marginal gap was evaluated before and after thermodynamic aging. Fracture resistance and failure mode were evaluated for the same samples after aging. Marginal adaptation was analyzed using the Mann-Whitney U test. Fracture resistance was analyzed using Weibull analysis (α = 0.05). RESULTS: The marginal gap was significantly increased following thermodynamic aging for tested groups (P < 0.001). CEREC Tessera showed a significantly higher marginal gap than Brilliant Crios before and after aging for both thicknesses (P < 0.05). CEREC Tessera recorded lower significant fracture load values compared to Brilliant Crios (P < 0.05). CONCLUSIONS: Both CEREC Tessera and Brilliant Crios demonstrated clinically accepted marginal gap values. All groups showed fracture resistance values higher than the average masticatory forces in the premolar region except for 0.6 mm CEREC Tessera. CLINICAL IMPLICATIONS: Reinforced composite occlusal veneers demonstrated more favorable outcomes in terms of marginal gap and fracture resistance at both tested thicknesses compared to virgilite-based lithium disilicate glass-ceramic. Additionally, caution should be exercised during the construction of occlusal veneers from virgilite-based lithium disilicate glass-ceramic with reduced thickness.


Assuntos
Envelhecimento , Força de Mordida , Humanos , Desenho Assistido por Computador , Resinas Epóxi , Estatísticas não Paramétricas
12.
BMC Oral Health ; 24(1): 328, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475773

RESUMO

BACKGROUND: In esthetic dentistry, a thorough esthetic analysis holds significant role in both diagnosing diseases and designing treatment plans. This study established a 3D esthetic analysis workflow based on 3D facial and dental models, and aimed to provide an imperative foundation for the artificial intelligent 3D analysis in future esthetic dentistry. METHODS: The established 3D esthetic analysis workflow includes the following steps: 1) key point detection, 2) coordinate system redetermination and 3) esthetic parameter calculation. The accuracy and reproducibility of this established workflow were evaluated by a self-controlled experiment (n = 15) in which 2D esthetic analysis and direct measurement were taken as control. Measurement differences between 3D and 2D analysis were evaluated with paired t-tests. RESULTS: 3D esthetic analysis demonstrated high consistency and reliability (0.973 < ICC < 1.000). Compared with 2D measurements, the results from 3D esthetic measurements were closer to direct measurements regarding tooth-related esthetic parameters (P<0.05). CONCLUSIONS: The 3D esthetic analysis workflow established for 3D virtual patients demonstrated a high level of consistency and reliability, better than 2D measurements in the precision of tooth-related parameter analysis. These findings indicate a highly promising outlook for achieving an objective, precise, and efficient esthetic analysis in the future, which is expected to result in a more streamlined and user-friendly digital design process. This study was registered with the Ethics Committee of Peking University School of Stomatology in September 2021 with the registration number PKUSSIRB-202168136.


Assuntos
Estética Dentária , Dente , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho , Face , Desenho Assistido por Computador
13.
BMC Oral Health ; 24(1): 337, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491485

RESUMO

BACKGROUND: The selection of post-core material holds significant importance in endodontically treated teeth, influencing stress distribution in the dental structure after restoration. The use of computer-aided design/computer-aided manufacturing (CAD/CAM) glass fiber post-core possesses a better adaptation for different root canal morphologies, but whether this results in a more favorable stress distribution has not been clearly established. MATERIALS AND METHODS: This study employed finite element analysis to establish three models of post-core crown restoration with normal, oversized, and dumbbell-shaped root canals. The three models were restored using three different materials: CAD/CAM glass fiber post-core (CGF), prefabricated glass fiber post and resin core (PGF), and cobalt-chromium integrated metal post-core (Co-Cr), followed by zirconia crown restoration. A static load was applied and the maximum equivalent von Mises stress, maximum principal stress, stress distribution plots, and the peak of maximum displacement were calculated for dentin, post-core, crown, and the cement acting as the interface between the post-core and the dentin. RESULTS: In dentin of three different root canal morphology, it was observed that PGF exhibited the lowest von Mises stresses, while Co-Cr exhibited the highest ones under a static load. CGF showed similar stress distribution to that of Co-Cr, but the stresses were more homogeneous and concentrated apically. In oversized and dumbbell-shaped root canal remnants, the equivalent von Mises stress in the cement layer using CGF was significantly lower than that of PGF. CONCLUSIONS: In oversized root canals and dumbbell-shaped root canals, CGF has shown good performance for restoration of endodontically treated teeth. CLINICAL RELEVANCE: This study provides a theoretical basis for clinicians to select post-core materials for residual roots with different root canal morphologies and should help to reduce the occurrence of complications such as root fracture and post-core debonding.


Assuntos
Vidro , Técnica para Retentor Intrarradicular , Dente não Vital , Humanos , Coroas , Cimentos Dentários , Cimentos de Ionômeros de Vidro , Desenho Assistido por Computador , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Resinas Compostas/química , Teste de Materiais , Estresse Mecânico
14.
BMC Res Notes ; 17(1): 80, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500215

RESUMO

A technique for the design of a hybrid tooth and bone-supported implant drilling guide is described. The patient was scanned using cone beam computed tomography and an optical intraoral scanner. The dicom file was segmented according to the area of interest composed of bone and the remaining natural teeth. The Standard Tessellation Language (STL) file was trimmed to only the teeth providing support, followed by merging between the bone and teeth files in one STL. The implant drilling guide was designed with the Real Guide software program, and the file was 3-dimensionally printed in clear surgical guide resin. This technique offers an accurate, cost-effective digitally designed implant placement guide for patients with long-span distal extension edentulous areas and few remaining natural dentitions providing distal bone support. It can also be used in patients with hemi maxillectomy for zygomatic implant placement. This type of surgical guide provides more accuracy in implant surgeries that require flab elevation by gaining more support from the remaining natural dentition.


Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Humanos , Desenho Assistido por Computador , Imageamento Tridimensional , Tomografia Computadorizada de Feixe Cônico , Software
15.
Int J Prosthodont ; 37(7): 89-98, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498861

RESUMO

PURPOSE: To assess crown die trueness using additive manufacturing (AM) based on intraoral scanning (IOS) data and compare it with stone models. MATERIALS AND METHODS: Crown dies with four finish line types- equigingival shoulder (SAE), subgingival shoulder (SAS), equigingival chamfer (CAE), and subgingival chamfer (CAS)-were incorporated into a reference model and scanned with a coordinate measurement machine (CMM; n = 1 scan). Trios4 (3Shape) scans generated a second reference dataset (IOS; n = 10 scans). Using scans, crown dies were produced with two different 3D printers (MAX UV385 [Asiga] and NextDent 5100 [3DSystems]; n = 10 per system). Stone dies were created from conventional impressions (n = 10). Specimens were digitized with a laboratory scanner (E4, 3Shape). Trueness was evaluated with Geomagic Control X (3DSystems). Data analysis was done using Shapiro-Wilk, Levene, ANOVA, and t tests (α < .05). RESULTS: All crown dies fell within the clinically acceptable trueness range (150 µm). IOS exhibited significantly lower (P < .05; Δ ≤ 21.7 µm) or similar trueness compared to stone models. Asiga dies demonstrated similar and NextDent significantly lower marginal trueness than IOS (P < .05; Δ ≤ 57.3 µm). Most AM margin areas had significantly lower trueness than stone (P < .001; Δ ≤ 57.2 µm). Asiga outperformed NextDent (P < .001). Shoulder trueness surpassed chamfer in optical scans (P = .01). Finish line design and gingiva location did not have a significant impact on AM and stone models (P > .05). CONCLUSIONS: Combining IOS and AM achieves clinically acceptable crown die trueness for single molar teeth. The choice of AM device is critical, with Asiga outperforming NextDent. Finish-line design has an impact on optical scans. Finish-line design and marginal gingiva location have little effect on AM trueness.


Assuntos
Desenho Assistido por Computador , Dente , Fluxo de Trabalho , Coroas , Técnica de Moldagem Odontológica , Imageamento Tridimensional
16.
Int J Prosthodont ; 37(7): 119-126, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498863

RESUMO

PURPOSE: To evaluate the effect of model resin type and time interval on the dimensional stability of additively manufactured diagnostic casts. MATERIALS AND METHODS: Ten irreversible hydrocolloid impressions and 10 impressions from an intraoral scanner were made from a reference maxillary stone cast, which was also digitized with a laboratory scanner. Conventional impressions were poured in type III stone (SC), while digital impressions were used to additively manufacture casts with a nanographene-reinforced model resin (GP) or a model resin (DM). All casts were digitized with the same laboratory scanner 1 day (T0), 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4) after fabrication. Cast scans were superimposed over the reference cast scan to evaluate dimensional stability. Data were analyzed with Bonferroni-corrected repeated measures ANOVA (α = .05). RESULTS: The interaction between the main factors (material type and time interval) affected anterior teeth deviations, while the individual main factors affected anterior teeth and entire-cast deviations (P ≤ .008). Within anterior teeth, DM had the lowest deviations at T3, and GP mostly had lower values at T2 and lower deviations at T3 than at T0 (P ≤ .041). SC had the highest pooled anterior teeth deviations, and GP had the highest pooled entire cast deviations (P < .001). T3 had lower pooled anterior teeth deviations than at T0, T1, and T4, and higher pooled entire cast deviations than T1 were demonstrated (P ≤ .027). CONCLUSIONS: The trueness of nanographene-reinforced casts was either similar to or higher than that of other casts. Dimensional changes were acceptable during the course of 1 month.


Assuntos
Desenho Assistido por Computador , Técnica de Moldagem Odontológica , Maxila , Imageamento Tridimensional
17.
Int J Prosthodont ; 37(7): 79-88, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498860

RESUMO

PURPOSE: To compare the accuracy of 12 different dental restorations fabricated with milling or 3D-printed molds and robotically controlled casting. MATERIALS AND METHODS: Twelve dental restorations (11 inlays and onlays and 1 crown) were made per restoration type, one per each of the 12 different teeth models (total of 24 restorations). On each tooth preparation, two restorations were manufactured using different CAD/ CAM techniques: (1) milling and (2) robotically controlled casting and 3D-printed molds. In addition, twolayer restorations were manufactured with 3D-printed molds. The marginal and internal gaps were evaluated at 120 points per restoration based on micro-CT 3D imaging. Internal gaps were evaluated using a replica technique with silicone. RESULTS: Median values (interquartile ranges) for marginal gaps, middle internal gaps, and central internal gaps were significantly lower for 3D-printed mold restorations (44.3 [65.4] µm, 95.4 [96.2] µm, and 104.6 [78.1] µm) compared to milled restorations (58.4 [93] µm, 145.9 [85.8] µm, and 138.6 [65.7] µm). Internal gaps in the 3D-printed mold group were 6% to 51% smaller than in the milled group. CONCLUSIONS: The accuracy of restorations fabricated with 3D-printed molds may be preferable compared to milled restorations, except in the case of crown restoration. However, additional studies with a larger number of samples and different types of restorations are needed to confirm the results.


Assuntos
Desenho Assistido por Computador , Adaptação Marginal Dentária , Projetos Piloto , Restaurações Intracoronárias , Coroas , Impressão Tridimensional , Planejamento de Prótese Dentária/métodos
18.
Int J Prosthodont ; 37(7): 133-141, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498865

RESUMO

PURPOSE: To evaluate the flexural strength (FS) and microhardness of various CAD/CAM restorative materials intended for definitive use. The effect of hydrothermal aging on the mechanical properties of these materials was also investigated. MATERIALS AND METHODS: A total of 210 bar-shaped specimens (17 × 4 × 1.5 mm ± 0.02 mm) were fabricated via either subtractive manufacturing (SM) methods-reinforced composite resin (SM-CR), polymer-infiltrated ceramic network (SM-PICN), fine-structured feldspathic ceramic (SMFC), nanographene-reinforced polymethyl methacrylate (PMMA; SM-GPMMA), PMMAbased resin (SM-PMMA)-or additive manufacturing (AM) methods with urethane acrylate-based resins (AM-UA1 and AM-UA2). Specimens were then divided into two subgroups (nonaged or hydrothermal aging; n = 15). A three-point flexural strength test was performed, and five specimens from the nonaged group were submitted to microhardness testing. Specimens were subjected to 10,000 thermal cycles, and the measurements were repeated. RESULTS: Regardless of aging, SM-CR had the highest FS (P < .001), followed by SM-GPMMA (P ≤ .042). In nonaged groups, AM-UA2 had a lower FS than all other materials except SM-FC (P = 1.000). In hydrothermal aging groups, AM specimens had lower FS values than other materials, except SM-PMMA. With regard to microhardness, there was no significant difference found between any of the tested materials (P ≥ .945) in the nonaged and hydrothermal aging groups. CONCLUSIONS: The effect of hydrothermal aging on FS varied depending on the type of restorative material. Regardless of aging condition, SM-CR showed the highest FS values, whereas SM-FC had the highest microhardness. Hydrothermal aging had no significant influence on the microhardness of the tested materials.


Assuntos
Resistência à Flexão , Polimetil Metacrilato , Materiais Dentários , Resinas Compostas , Polímeros , Teste de Materiais , Propriedades de Superfície , Desenho Assistido por Computador
19.
BMC Oral Health ; 24(1): 359, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509530

RESUMO

This systematic review explores the accuracy of computerized guided implant placement including computer-aided static, dynamic, and robot-assisted surgery. An electronic search up to February 28, 2023, was conducted using the PubMed, Embase, and Scopus databases using the search terms "surgery", "computer-assisted", "dynamic computer-assisted", "robotic surgical procedures", and "dental implants". The outcome variables were discrepancies including the implant's 3D-coronal, -apical and -angular deviations. Articles were selectively retrieved according to the inclusion and exclusion criteria, and the data were quantitatively meta-analysed to verify the study outcomes. Sixty-seven articles were finally identified and included for analysis. The accuracy comparison revealed an overall mean deviation at the entry point of 1.11 mm (95% CI: 1.02-1.19), and 1.40 mm (95% CI: 1.31-1.49) at the apex, and the angulation was 3.51˚ (95% CI: 3.27-3.75). Amongst computerized guided implant placements, the robotic system tended to show the lowest deviation (0.81 mm in coronal deviation, 0.77 mm in apical deviation, and 1.71˚ in angular deviation). No significant differences were found between the arch type and flap operation in cases of dynamic navigation. The fully-guided protocol demonstrated a significantly higher level of accuracy compared to the pilot-guided protocol, but did not show any significant difference when compared to the partially guided protocol. The use of computerized technology clinically affirms that operators can accurately place implants in three directions. Several studies agree that a fully guided protocol is the gold standard in clinical practice.


Assuntos
Implantes Dentários , Procedimentos Cirúrgicos Robóticos , Cirurgia Assistida por Computador , Humanos , Implantação Dentária Endóssea/métodos , Computadores , Desenho Assistido por Computador , Tomografia Computadorizada de Feixe Cônico , Imageamento Tridimensional
20.
Acta Chir Plast ; 65(3-4): 128-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538300

RESUMO

Nowadays, techniques and the use of patient specific implants seem to be the recent high technology standard in reconstructive surgery. Surgery planning is as old as the surgery procedures themselves. Any good surgeon, before entering the operating theatre, has a plan for how to proceed. It is based on knowledge and experience in combination of evaluation of all case relevant information. In fact, virtual surgery planning and CAD/CAM reflects the technological "state of the art" into the medical daily practice. Recently, 3D printing technologies became easy and accessible for everyone. Virtual 3D images substituted the plaster models, the film profile analysis switched to digital, 3D printed bone models of the case helped to understand the morphology of the deformity and prepare the osteotomies with "hands on the bone". The authors' own 20 years of experience on surgical planning, the development of digital technologies in oral and maxillofacial surgery is traced and comments on case examples are presented.


Assuntos
Procedimentos de Cirurgia Plástica , Cirurgia Bucal , Humanos , Fíbula/cirurgia , Impressão Tridimensional , Desenho Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...