Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.530
Filtrar
1.
PeerJ ; 12: e16828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436023

RESUMO

A new labrid fish species, Halichoeres sanchezi n. sp., is described from eight specimens collected in the Revillagigedo Archipelago in the tropical eastern Pacific Ocean, off the coast of Mexico. The new species belongs to the Halichoeres melanotis species complex that is found throughout the region, differing by 2.4% in the mtDNA cytochrome c oxidase I sequence from its nearest relative, H. melanotis from Panama, and 2.9% from Halichoeres salmofasciatus from Cocos Island, off Costa Rica. The complex is distinguished from others in the region by having a black spot on the opercular flap and a prominent black area on the caudal fin of males. The juveniles and initial phase of the new species closely resemble those of H. salmofasciatus and Halichoeres malpelo from Malpelo Island of Colombia, differing in having an oblong black spot with a yellow dorsal margin on the mid-dorsal fin of initial-phase adults as well as on juveniles. In contrast, the terminal-phase male color pattern is distinct from other relatives, being vermilion to orangish brown with dark scale outlines, a white patch on the upper abdomen, and a prominent black band covering the posterior caudal peduncle and base of the caudal fin. The new species adds to the list of endemic fish species for the isolated archipelago and is an interesting case of island endemism in the region. The discovery was made during the joint 2022 collecting expedition to the archipelago, which featured a pioneering collaborative approach to an inventory of an island ichthyofauna, specifically including expert underwater photographers systematically documenting specimens in situ, before hand-collection, and then photographed fresh, tissue-sampled, and subsequently vouchered in museum collections.


Assuntos
Cavidade Abdominal , Perciformes , Masculino , Animais , México , Oceano Pacífico , Peixes/genética
2.
PeerJ ; 12: e16847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426139

RESUMO

Many studies have shown that environmental DNA (eDNA) sampling can be more sensitive than traditional sampling. For instance, past studies found a specific qPCR probe of a water sample is better than a seine for detecting the endangered northern tidewater goby, Eucyclogobius newberryi. Furthermore, a metabarcoding sample often detects more fish species than a seine detects. Less consideration has been given to sampling costs. To help managers choose the best sampling method for their budget, I estimated detectability and costs per sample to compare the cost effectiveness of seining, qPCR and metabarcoding for detecting endangered tidewater gobies as well as the associated estuarine fish community in California. Five samples were enough for eDNA methods to confidently detect tidewater gobies, whereas seining took twice as many samples. Fixed program costs can be high for qPCR and seining, whereas metabarcoding had high per-sample costs, which led to changes in relative cost-effectiveness with the number of locations sampled. Under some circumstances (multiple locations visited or an already validated assay), qPCR was a bit more cost effective than metabarcoding for detecting tidewater gobies. Under all assumptions, seining was the least cost-effective method for detecting tidewater gobies or other fishes. Metabarcoding was the most cost-effective sampling method for multiple species detection. Despite its advantages, metabarcoding has gaps in sequence databases, can yield vague results for some species, and can lead novices to serious errors. Seining remains the only way to rapidly assess densities, size distributions, and fine-scale spatial distributions.


Assuntos
DNA Ambiental , Perciformes , Animais , Análise Custo-Benefício , Análise de Custo-Efetividade , Peixes/genética , Perciformes/genética
3.
Curr Biol ; 34(5): R193-R194, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471445

RESUMO

The symbiosis between giant sea anemones, algae of the family Symbiodiniaceae, and anemonefish is an iconic example of a mutualistic trio1,2. Molecular analyses have shown that giant sea anemones hosting anemonefish belong to three clades: Entacmaea, Stichodactyla, and Heteractis3,4,5 (Figure 1A). Associations among 28 species of anemonefish and 10 species of giant sea anemone hosts are complex. Some fish species are highly specialized to only one anemone species (e.g., Amphiprion frenatus with Entacmaea quadricolor), whereas others are more generalist (e.g., Amphiprion clarkii)1,2,6. Reasons for host preferences are obscured, among other things, by the lack of resolution in the giant sea anemone phylogeny. Here, we generated a transcriptomic dataset from 55 sea anemones collected from southern Japan to reconstruct these phylogenetic relationships. We observed that the bubble-tip sea anemone E. quadricolor, currently considered a single species, can be separated into at least four cryptic lineages (A-D). Surprisingly, these lineages can be precisely distinguished by observing their association with anemonefish: A. frenatus only associates with lineage D, whereas A. clarkii lives in the other three lineages.


Assuntos
Perciformes , Anêmonas-do-Mar , Humanos , Animais , Filogenia , Peixes , Simbiose
4.
Biol Lett ; 20(3): 20230285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471565

RESUMO

For prey, taking refuge from predators has obvious fitness benefits but may also be costly by impinging on time and effort available for feeding or attracting mates. The antipredator responses of refuge-seeking animals are therefore predicted to vary strategically depending on how threatening they perceive the risk. To test this, we studied the impacts of a simulated predatory threat on the antipredator responses of wild sandy prawn-gobies (Ctenogobiops feroculus) that co-inhabit burrows with Alpheus shrimp (family Alpheidae) in a mutualistic relationship. We exposed goby-shrimp pairs, repeatedly on three separate occasions, to an approaching threat and measured the antipredator behaviours of both partners. We found that re-emerging from the burrow took longer in large compared to small fish. Moreover, quicker re-emergence by small-but not medium or large-sized gobies-was associated with an earlier flight from the approaching threat (i.e. when the threat was still further away). Finally, the goby and shrimp sharing a burrow were matched in body size and their risk-taking behaviour was highly dependent on one another. The findings contribute to our understanding of how an individual's phenotype and perception of danger relates to its risk-taking strategy, and how mutualistic partners can have similar risk sensitivities.


Assuntos
Decápodes , Perciformes , Animais , Simbiose , Peixes/fisiologia , Decápodes/fisiologia , Comportamento Predatório
5.
Lab Anim (NY) ; 53(3): 62, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438740
6.
BMC Genomics ; 25(1): 233, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438840

RESUMO

BACKGROUND: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.


Assuntos
Perciformes , Animais , Perciformes/genética , Genômica , Regiões Antárticas , Evolução Biológica , Proteínas Anticongelantes
7.
Pestic Biochem Physiol ; 199: 105756, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458693

RESUMO

Cryptocaryons irritans is a ciliate parasite responsible for cryptocaryoniasis, leading to considerable economic losses in aquaculture. It is typically managed using a copper-zinc alloy (CZA), effectively diminishing C. irritans infection rates while ensuring the safety of aquatic organisms. Nevertheless, the precise mechanism underlying cuproptosis induced C. irritans mortality following exposure to CZA remains enigmatic. Therefore, this study delves into assessing the efficacy of CZA, investigate cuproptosis as a potential mechanism of CZA action against C. irritans, and determine the alterations in antioxidant enzymes, peroxidation, and lipid metabolism. The mRNA expression of dihydrolipoamide S-acetyltransferase was upregulated after 40 and 70 min, while aconitase 1 was implicated in cuproptosis following 70 min of CZA exposure. Furthermore, the relative mRNA levels of glutathione reductase experienced a significant increase after 40 and 70 min of CZA exposure. In contrast, the relative mRNA levels of glutathione S-transferase and phospholipid-hydroperoxide glutathione peroxidase were significantly decreased after 70 min, suggesting a disruption in antioxidant defense and an imbalance in copper ions. Lipidomics results also unveiled an elevation in glycerophospholipids metabolism and the involvement of the lipoic acid pathway, predominantly contributing to cuproptosis. In summary, exposure to CZA induces cuproptosis in C. irritans, impacts glutathione-related enzymes, and alters glycerophospholipids, consequently triggering lipid oxidation.


Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Perciformes , Animais , Infecções por Cilióforos/parasitologia , Cobre/toxicidade , Ligas , Antioxidantes , Perciformes/parasitologia , Doenças dos Peixes/parasitologia , Metabolismo dos Lipídeos , RNA Mensageiro , Glicerofosfolipídeos , Lipídeos , Zinco/toxicidade
8.
Proc Natl Acad Sci U S A ; 121(11): e2321162121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446853

RESUMO

According to Dollo's Law of irreversibility in evolution, a lost structure is usually considered to be unable to reappear in evolution due to the accumulation over time of mutations in the genes required for its formation. Cypriniform fish are a classic model of evolutionary loss because, while they form fully operational teeth in the ventral posterior pharynx, unlike other teleosts, they do not possess oral teeth. Paleontological data show that Cypriniforms, a clade of teleost fish that includes the zebrafish, lost their oral teeth 50 to 100 Mya. In order to attempt to reverse oral tooth loss in zebrafish, we block the degradation of endogenous levels of retinoic acid (RA) using a specific inhibitor of the Cyp26 RA degrading enzymes. We demonstrate the inhibition of endogenous RA degradation is sufficient to restore oral tooth induction as marked by the re-appearance of expression of early dental mesenchyme and epithelium genes such as dlx2b and sp7 in the oral cavity. Furthermore, we show that these exogenously induced oral tooth germs are able to be at least partly calcified. Taken together, our data show that modifications of signaling pathways can have a significant effect on the reemergence of once-lost structures leading to experimentally induced reversibility of evolutionary tooth loss in cypriniforms.


Assuntos
Perciformes , Perda de Dente , Animais , Peixe-Zebra , Odontogênese
9.
Elife ; 132024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497789

RESUMO

The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.


Assuntos
Perciformes , Viroses , Animais , Peixe-Zebra , Hematopoese/genética , Rim , Imunidade Adaptativa , Análise de Sequência de RNA , Mamíferos
10.
Ecotoxicol Environ Saf ; 273: 116175, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458070

RESUMO

Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Humanos , Antioxidantes/metabolismo , Microplásticos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Perciformes/genética , Perciformes/metabolismo , Estresse Oxidativo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
11.
Chronobiol Int ; 41(3): 329-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516993

RESUMO

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Assuntos
Melatonina , Perciformes , Glândula Pineal , Animais , Ritmo Circadiano/fisiologia , Fotoperíodo , Glândula Pineal/metabolismo , Melatonina/metabolismo , Expressão Gênica , Perciformes/genética , Perciformes/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
12.
Nat Commun ; 15(1): 2591, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519478

RESUMO

Zebrafish constitute a convenient laboratory-based biological system for studying collective behavior. It is possible to interpret a group of zebrafish as a system of interacting agents and to apply methods developed for the analysis of systems of active and even passive particles. Here, we consider the effect of group size. We focus on two- and many-body spatial correlations and dynamical order parameters to investigate the multistate behavior. For geometric reasons, the smallest group of fish which can exhibit this multistate behavior consisting of schooling, milling and swarming is three. We find that states exhibited by groups of three fish are similar to those of much larger groups, indicating that there is nothing more than a gradual change in weighting between the different states as the system size changes. Remarkably, when we consider small groups of fish sampled from a larger group, we find very little difference in the occupancy of the state with respect to isolated groups, nor is there much change in the spatial correlations between the fish. This indicates that fish interact predominantly with their nearest neighbors, perceiving the rest of the group as a fluctuating background. Therefore, the behavior of a crowd of fish is already apparent in groups of three fish.


Assuntos
Perciformes , Peixe-Zebra , Animais , Comportamento Animal , Modelos Biológicos , Natação , Comportamento Social
13.
Sci Rep ; 14(1): 6670, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509148

RESUMO

Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.


Assuntos
Orelha Interna , Peixes Listrados , Sistema da Linha Lateral , Perciformes , Animais , Masculino , Feminino , Peixe-Zebra/genética , Células Ciliadas Auditivas/metabolismo , Regeneração/genética , Mamíferos
14.
Naturwissenschaften ; 111(2): 18, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502308

RESUMO

Environmental RNA (eRNA) analysis is conventionally expected to infer physiological information about organisms within their ecosystems, whereas environmental DNA (eDNA) analysis only infers their presence and abundance. Despite the promise of eRNA application, basic research on eRNA characteristics and dynamics is limited. The present study conducted aquarium experiments using zebrafish (Danio rerio) to estimate the particle size distribution (PSD) of eRNA in order to better understand the persistence state of eRNA particles. Rearing water samples were sequentially filtered using different pore-size filters, and the resulting size-fractioned mitochondrial cytochrome b (CytB) eDNA and eRNA data were modeled with the Weibull complementary cumulative distribution function (CCDF) to estimate the parameters characterizing the PSDs. It was revealed that the scale parameter (α) was significantly higher (i.e., the mean particle size was larger) for eRNA than eDNA, while the shape parameter (ß) was not significantly different between them. This result supports the hypothesis that most eRNA particles are likely in a protected, intra-cellular state, which mitigates eRNA degradation in water. Moreover, these findings also imply the heterogeneous dispersion of eRNA relative to eDNA and suggest an efficient method of eRNA collection using a larger pore-size filter. Further studies on the characteristics and dynamics of eRNA particles should be pursued in the future.


Assuntos
DNA Ambiental , Perciformes , Animais , Peixe-Zebra/genética , Citocromos b/genética , Ecossistema , RNA , Tamanho da Partícula , Água
15.
Rapid Commun Mass Spectrom ; 38(9): e9730, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456249

RESUMO

RATIONALE: ADB-FUBIATA is one of the most recently identified new psychoactive substance (NPS) of synthetic cannabinoids. The co-use of in vitro (human liver microsomes) and in vivo (zebrafish) models offers abundant metabolites and may give a deep insight into the metabolism of NPS. METHODS: In vivo and in vitro metabolic studies of new synthetic cannabinoid ADB-FUBIATA were carried out using zebrafish and pooled human liver microsome models. Metabilites were structurally characterized by liquid chromatography-high-resolution mass spectrometry. RESULTS: In total, 18 metabolites were discovered and identified in the pooled human liver microsomes and zebrafish, including seventeen phase I metabolites and one phase II metabolite. The main metabolic pathways of ADB-FUBIATA were hydroxylation, dehydrogenation, N-dealkylation, amide hydrolysis, glucuronidation, and combination thereof. CONCLUSION: Hydroxylated metabolites can be recommended as metabolic markers for ADB-FUBIATA because of the structural characteristics and high intensity. These metabolism characteristics of ADB-FUBIATA were useful for its further forensic or clinical related investigations.


Assuntos
Canabinoides , Perciformes , Animais , Humanos , Peixe-Zebra/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Indazóis/análise , Canabinoides/análise , Perciformes/metabolismo
16.
Curr Biol ; 34(4): R131-R132, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412818

RESUMO

A major challenge for group-hunting predators is coordinating movement at high speed. Billfish - large predators with an elongated rostrum (bill) - include some of the fastest animals in the ocean and often form groups when hunting. This presents a challenge: how do fast-moving predators wielding dangerous weaponry reliably coordinate their attacks to avoid injury? We report a possible solution to this problem through rapid colour change in group-hunting striped marlin (Kajikia audax) as they hunt schools of Pacific sardines (Sardinops sagax). By analysing high-resolution drone footage of marlin attacks, we found that individual marlin intensified the contrast of their body stripes immediately prior to striking prey schools, before rapidly decreasing intensity after their attack. This suggests that color change may be a reliable signal of motivation to attack, potentially deterring conspecifics from attacking.


Assuntos
Caça , Perciformes , Animais , Comportamento Predatório , Peixes , Instituições Acadêmicas
17.
Artigo em Inglês | MEDLINE | ID: mdl-38373514

RESUMO

Cyclophosphamide (CP) is a broad-spectrum anticancer drug for various cancers and frequently detected in aquatic environments, reaching concentrations up to 22 µg/L. However, there is limited understanding of the toxicities of CP with the presence of dissolved organic matter, a ubiquitous component in aquatic environments, in fish. In this study, we investigated the behaviors, morphological alterations of retina, and related gene transcripts in zebrafish exposed to CP (0 and 50 µg/L) and Humic acid (HA, a main component of DOM) at concentrations of 0, 3, 10, and 30 mg-C/L for 30 days. The results showed that, relative to the zebrafish in CP treatment, HA at 30 mg-C/L increased the locomotion (12.1 % in the light and 7.2 % in the dark) and startle response (9.7 %), while inhibiting the anxiety (12.5 %) and cognition of female zebrafish (24.6 %). The levels of transcripts of neurotransmitter- (tph1b and ache), neuroinflammation-(il-6 and tnfα) and antioxidant-(gpx) related genes in the brain of female adult were also altered by CP with the presence of HA. In addition, HA promoted the transgenerational effects of CP on the neurobehaviors. Therefore, HA can enhance potential neurotoxicity of CP in female fish through alteration neurotransmission related genes. Our findings provide new insights into the toxicity and underlying mechanisms of CP with the presence of dissolved organic matter, thereby contribute to a deeper understanding of the risks posed by CP in aquatic ecosystems.


Assuntos
Perciformes , Peixe-Zebra , Feminino , Animais , Matéria Orgânica Dissolvida , Ecossistema , Ciclofosfamida/toxicidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-38378123

RESUMO

A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.


Assuntos
Perciformes , Petróleo , Animais , Exposição Dietética/efeitos adversos , Petróleo/toxicidade , Perciformes/fisiologia , Ácidos Graxos , Colesterol
19.
Bull Environ Contam Toxicol ; 112(2): 39, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353786

RESUMO

Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the most widely used analgesics. To examine the toxicity of APAP, we used zebrafish embryos as model animals to detect the effect of APAP on the thyroid system of zebrafish embryos. The zebrafish embryos were exposed to APAP from 4 h post fertilization (4 hpf) until observation. The experimental results showed that APAP caused pericardial edema and decreased pigmentation in the zebrafish embryos or larvae. The APAP treatment caused a decrease in the expression of tpo and thrß in the zebrafish at 36 and 72 hpf. The transcriptomic analysis found that APAP affected retinol metabolism, the metabolism of xenobiotics by cytochrome P450, and the tyrosine metabolism pathway. The harmful effect of APAP on zebrafish embryos might be due to its disrupting effect on the functional regulation of the thyroid hormone system.


Assuntos
Acetaminofen , Perciformes , Animais , Acetaminofen/toxicidade , Peixe-Zebra , Tiroxina , Pigmentação , Glândula Tireoide
20.
PLoS One ; 19(2): e0298755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408089

RESUMO

Queen snapper (Etelis oculatus) is of interest from an ecological and management perspective as it is the second most landed finfish species (by total pounds) as determined by Puerto Rico commercial landings (2010-2019). As fishing activities progressively expand into deeper waters, it is critical to gather data on deep-sea fish populations to identify essential fish habitats (EFH). In the U.S. Caribbean, the critically data-deficient nature of this species has made this challenging. We investigated the use of ensemble species distribution modeling (ESDM) to predict queen snapper distribution along the coast of Puerto Rico. Using occurrence data and terrain attributes derived from bathymetric datasets at different resolutions, we developed species distribution models unique to each sampling region (west, northeast, and southeast Puerto Rico) using seven different algorithms. Then, we developed ESDM models to analyze fish distribution using the highest-performing algorithms for each region. Model performance was evaluated for each ensemble model, with all depicting 'excellent' predictive capability (AUC > 0.8). Additionally, all ensemble models depicted 'substantial agreement' (Kappa > 0.7). We then used the models in combination with existing knowledge of the species' range to produce binary maps of potential queen snapper distributions. Variable importance differed across spatial resolutions of 30 m (west region) and 8 m (northeast and southeast region); however, bathymetry was consistently one of the best predictors of queen snapper suitable habitat. Positive detections showed strong regional patterns localized around large bathymetric features, such as seamounts and ridges. Despite the data-deficient condition of queen snapper population dynamics, these models will help facilitate the analysis of their spatial distribution and habitat preferences at different spatial scales. Our results therefore provide a first step in designing long-term monitoring programs targeting queen snapper, and determining EFH and the general distribution of this species in Puerto Rico.


Assuntos
Ecossistema , Perciformes , Animais , Porto Rico , Algoritmos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...