Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.455
Filtrar
1.
Ann Med ; 56(1): 2337738, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38590185

RESUMO

BACKGROUND: Early antimicrobial therapy is crucial regarding the prognosis of vertebral osteomyelitis, but early pathogen diagnosis remains challenging. OBJECTIVE: In this study, we aimed to differentiate the types of pathogens in iatrogenic vertebral osteomyelitis (IVO) and native vertebral osteomyelitis (NVO) to guide early antibiotic treatment. METHODS: A total of 145 patients, who had confirmed spinal infection and underwent metagenomic next-generation sequencing (mNGS) testing, were included, with 114 in the NVO group and 31 in the IVO group. Using mNGS, we detected and classified 53 pathogens in the 31 patients in the IVO group and 169 pathogens in the 114 patients in the NVO group. To further distinguish IVO from NVO, we employed machine learning algorithms to select serum biomarkers and developed a nomogram model. RESULTS: The results revealed that the proportion of the Actinobacteria phylum in the NVO group was approximately 28.40%, which was significantly higher than the 15.09% in the IVO group. Conversely, the proportion of the Firmicutes phylum (39.62%) in the IVO group was markedly increased compared to the 21.30% in the NVO group. Further genus-level classification demonstrated that Staphylococcus was the most common pathogen in the IVO group, whereas Mycobacterium was predominant in the NVO group. Through LASSO regression and random forest algorithms, we identified 5 serum biomarkers including percentage of basophils (BASO%), percentage of monocytes (Mono%), platelet volume (PCT), globulin (G), activated partial thromboplastin time (APTT) for distinguishing IVO from NVO. Based on these biomarkers, we established a nomogram model capable of accurately discriminating between the two conditions. CONCLUSION: The results of this study hold promise in providing valuable guidance to clinical practitioners for the differential diagnosis and early antimicrobial treatment of vertebral osteomyelitis.


Assuntos
Anti-Infecciosos , Osteomielite , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológico , Biomarcadores , Doença Iatrogênica , China/epidemiologia , Sensibilidade e Especificidade
2.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580674

RESUMO

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Fibra de Algodão , Ácido Succínico , Nanopartículas Metálicas/química , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química
3.
Curr Microbiol ; 81(5): 128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580768

RESUMO

Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.


Assuntos
Anti-Infecciosos , Bacillus , Antifúngicos/química , Bacillus/metabolismo , Fungos/metabolismo , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Extratos Vegetais/metabolismo , Endófitos
4.
Sci Rep ; 14(1): 8025, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580807

RESUMO

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/farmacologia , Staphylococcus epidermidis , Puromicina
5.
Arch Microbiol ; 206(5): 207, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581477

RESUMO

Multidrug microbial resistance is risking an annual loss of more than 10 million people' lives by 2050. Solutions include the rational use of antibiotics and the use of drugs that reduce resistance or completely obliterate them. Here endophytes come to play due to their high-yield production and inherent nature to produce antimicrobial molecules. Around 40%, 45% and 17% of antibacterial agents were obtained from fungi, actinomycetes, and bacteria, respectively, whose secondary metabolites revealed effectiveness against resistant microbes such as MRSA, MRSE, and Shigella flexneri. Endophyte's role was not confined to bactericidal effect but extended to other mechanisms against MDR microbes, among which was the adjuvant role or the "magic bullets". Scarce focus was given to antibiotic adjuvants, and many laboratories today just screen for the antimicrobial activity without considering combinations with traditional antibiotics, which means real loss of promising resistance combating molecules. While some examples of synthetic adjuvants were introduced in the last decade, the number is still far from covering the disused antibiotics and restoring them back to clinical use. The data compiled in this article demonstrated the significance of quorum sensing as a foreseen mechanism for adjuvants from endophytes secondary metabolites, which call for urgent in-depth studies of their molecular mechanisms. This review, comprehensively and for the first time, sheds light on the significance of endophytes secondary metabolites in solving AMR problem as AB adjuvants.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Endófitos , Anti-Infecciosos/farmacologia , Adjuvantes Imunológicos/farmacologia , Bactérias
6.
Sci Rep ; 14(1): 8103, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582880

RESUMO

Antimicrobial resistance genes (ARG), such as extended-spectrum ß-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum ß-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Animais , Escherichia coli/genética , Klebsiella pneumoniae/genética , Ágar/farmacologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Plasmídeos/genética , Anti-Infecciosos/farmacologia , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , Mamíferos/genética
7.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582926

RESUMO

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Citrus/química , Escherichia coli/metabolismo , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Citrus sinensis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
8.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611727

RESUMO

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Assuntos
Anti-Infecciosos , Nanopartículas , Prata/farmacologia , Gossypium , Têxteis , Anti-Infecciosos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia
9.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611802

RESUMO

LL-37 is the only member of the cathelicidin-type host defense peptide family in humans. It exhibits broad-spectrum bactericidal activity, which represents a distinctive advantage for future therapeutic targets. The presence of choline in the growth medium for bacteria changes the composition and physicochemical properties of their membranes, which affects LL-37's activity as an antimicrobial agent. In this study, the effect of the LL-37 peptide on the phospholipid monolayers at the liquid-air interface imitating the membranes of Legionella gormanii bacteria was determined. The Langmuir monolayer technique was employed to prepare model membranes composed of individual classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL)-isolated from L. gormanii bacteria supplemented or non-supplemented with exogenous choline. Compression isotherms were obtained for the monolayers with or without the addition of the peptide to the subphase. Then, penetration tests were carried out for the phospholipid monolayers compressed to a surface pressure of 30 mN/m, followed by the insertion of the peptide into the subphase. Changes in the mean molecular area were observed over time. Our findings demonstrate the diversified effect of LL-37 on the phospholipid monolayers, depending on the bacteria growth conditions. The substantial changes in membrane properties due to its interactions with LL-37 enable us to propose a feasible mechanism of peptide action at a molecular level. This can be associated with the stable incorporation of the peptide inside the monolayer or with the disruption of the membrane leading to the removal (desorption) of molecules into the subphase. Understanding the role of antimicrobial peptides is crucial for the design and development of new strategies and routes for combating resistance to conventional antibiotics.


Assuntos
Anti-Infecciosos , Legionella , Legionellaceae , Humanos , Fosfolipídeos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Colina
10.
Sci Transl Med ; 16(742): eadk8222, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598612

RESUMO

Despite modern antiseptic techniques, surgical site infection (SSI) remains a leading complication of surgery. However, the origins of SSI and the high rates of antimicrobial resistance observed in these infections are poorly understood. Using instrumented spine surgery as a model of clean (class I) skin incision, we prospectively sampled preoperative microbiomes and postoperative SSI isolates in a cohort of 204 patients. Combining multiple forms of genomic analysis, we correlated the identity, anatomic distribution, and antimicrobial resistance profiles of SSI pathogens with those of preoperative strains obtained from the patient skin microbiome. We found that 86% of SSIs, comprising a broad range of bacterial species, originated endogenously from preoperative strains, with no evidence of common source infection among a superset of 1610 patients. Most SSI isolates (59%) were resistant to the prophylactic antibiotic administered during surgery, and their resistance phenotypes correlated with the patient's preoperative resistome (P = 0.0002). These findings indicate the need for SSI prevention strategies tailored to the preoperative microbiome and resistome present in individual patients.


Assuntos
Anti-Infecciosos , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção da Ferida Cirúrgica/microbiologia , Antibioticoprofilaxia , Pele , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Rocz Panstw Zakl Hig ; 75(1): 75-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587107

RESUMO

Background: Despite the extensive literature focused on propolis extract, few data exists on the bioactive compounds and biological activities in the Moroccan propolis and its economic value is low. Objective: In this research, the aim was to evaluate the total content of phenols and flavonoids as well as the antioxidant, antibacterial and antifungal activities of Moroccan propolis. Material and Methods: The polyphenol and flavonoid content of the Moroccan propolis from three geographic regions, was quantified in the ethanolic extract by colorimetric methods using folin-ciocalteu and aluminum chloride. The antioxidant activity was evaluated by the DPPH test and expressed as IC50. Disk diffusion and broth microdilution methods were used to examine in vitro antimicrobial activity against known human microorganism pathogens. Results: The obtained data revealed that Moroccan propolis samples presented significant variations in total polyphenols and flavonoids. All samples showed significant antioxidant activity with IC50 values ranging from 4.23±0.5 to 154±0.21 µg/ mL. A strong correlation between total phenolic activity, flavonoids and antioxidant activity was found. The in vitro study of antibacterial activity showed that the propolis samples exhibited a range of growth inhibitory actions against all bacterial strains tested with the highest activity against gram-positive bacteria. Only propolis from the Sidi Bennour region demonstrated an antifungal activity. Conclusion: The study data show that Moroccan propolis extracts have a promising content of antioxidant and antimicrobial compounds that could be exploited to prevent certain diseases linked to oxidative stress and pathogenic infections.


Assuntos
Anti-Infecciosos , Própole , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Própole/farmacologia , Própole/química , Antifúngicos/farmacologia , Fenóis/farmacologia , Polifenóis , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
12.
BMC Complement Med Ther ; 24(1): 155, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589838

RESUMO

Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.


Assuntos
Anti-Infecciosos , Lavandula , Lipossomos , Nanopartículas , Staphylococcus aureus , Lipídeos , Géis
13.
Rinsho Ketsueki ; 65(3): 153-157, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38569858

RESUMO

An 80-year-old man with FLT3-TKD mutation-positive acute myeloid leukemia (AML) relapsed during consolidation therapy with venetoclax/azacitidine and was started on gilteritinib as salvage therapy. On the day after treatment initiation, febrile neutropenia was observed, but the fever resolved promptly after initiation of antimicrobial therapy. On the fifth day after completion of antimicrobial therapy, the patient experienced fever and watery diarrhea over 10 times a day, and a diagnosis of Clostridioides difficile infection (CDI) was made based on stool examination. The patient was treated with intravenous metronidazole, but renal dysfunction, hypotension, and hypoxemia developed, and a CT scan showed pleural and intraperitoneal effusion, significant intestinal wall thickening, and intestinal dilatation. Fidaxomicin was started under general monitoring in the intensive care unit and response was achieved. The patient was discharged from the intensive care unit on the 18th day after the onset of CDI. We report this case not only due to the rarity of fulminant CDI during AML treatment, but also because it is a valuable example of effective treatment of fulminant CDI with fidaxomicin.


Assuntos
Anti-Infecciosos , Infecções por Clostridium , Leucemia Mieloide Aguda , Masculino , Humanos , Idoso de 80 Anos ou mais , Fidaxomicina , Infecções por Clostridium/tratamento farmacológico , Resultado do Tratamento , Inibidores de Proteínas Quinases , Leucemia Mieloide Aguda/tratamento farmacológico , Antibacterianos/efeitos adversos , Tirosina Quinase 3 Semelhante a fms
14.
Int Wound J ; 21(4): e14817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567778

RESUMO

This Phase 1b study was designed to evaluate the safety and efficacy of pravibismane, a novel broad-spectrum topical anti-infective, in managing moderate or severe chronic diabetic foot ulcer (DFU) infections. This randomized, double-blind, placebo-controlled, multicenter study consisted of 39 individuals undergoing pravibismane treatment and 13 individuals in the placebo group. Assessment of safety parameters included clinical observations of tolerability and pharmacokinetics from whole blood samples. Pravibismane was well-tolerated and exhibited minimal systemic absorption, as confirmed by blood concentrations that were below the lower limit of quantitation (0.5 ng/mL) or in the low nanomolar range, which is orders of magnitude below the threshold of pharmacological relevance for pravibismane. Pravibismane treated subjects showed approximately 3-fold decrease in ulcer size compared to the placebo group (85% vs. 30%, p = 0.27). Furthermore, the incidence of ulcer-related lower limb amputations was approximately 6-fold lower (2.6%) in the pooled pravibismane group versus 15.4% in the placebo group (p = 0.15). There were no treatment emergent or serious adverse events related to study drug. The initial findings indicate that topical pravibismane was safe and potentially effective treatment for improving recovery from infected chronic ulcers by reducing ulcer size and facilitating wound healing in infected DFUs (ClinicalTrials.gov Identifier NCT02723539).


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Antibacterianos/uso terapêutico , Método Duplo-Cego , Anti-Infecciosos/uso terapêutico , Úlcera/tratamento farmacológico , Resultado do Tratamento
15.
J Vet Sci ; 25(2): e23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568825

RESUMO

The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.


Assuntos
Anti-Infecciosos , Sais , Humanos , Animais , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Células Epiteliais , Histona Desacetilases
16.
Mymensingh Med J ; 33(2): 592-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557545

RESUMO

A natural irrigation solution with a broad spectrum of antimicrobial coverage, triphala was selected for the pulpectomy procedure. Because of its natural ingredients, it is well-known for promoting tissue healing. It also supposedly has certain additional qualities as compared to usual irrigation solutions that are made chemically. Although 2.5% NaOCl is thought to be perfect since it meets most of the requirements for an irrigation solution but it cannot be optimized for pulpectomy procedure. Primary teeth that were recommended for pulpectomy underwent this randomized controlled experiment. Two groups of eighty-four primary teeth were randomly assigned to receive irrigations: triphala in Group A; 2.5% Sodium hypochlorite in Group B. Sample were taken from infected primary root canals. A sterile test tube with bhi broth as the transport media was used to collect pre- and post-irrigation samples using sterile absorbent paper tips. On agar media, microorganisms were cultivated and their mean colony count was assessed. Following the procedure, the patient's follow-up visits at one, two and three months were used to evaluate the clinical result. The post-microbial colony count was dramatically reduced (p<0.001) by both irrigation treatments. Triphala in Group A is demonstrating desirable efficacy. Clinical success was found satisfactory in both the groups studied (p<0.001). But statistically significant difference was not found (p=0.175). Considering undesirable properties of sodium hypochlorite triphala can be a better alternative as a root canal irrigants in pulpectomy of primary teeth.


Assuntos
Anti-Infecciosos , Extratos Vegetais , Hipoclorito de Sódio , Humanos , Hipoclorito de Sódio/uso terapêutico , Pulpectomia/métodos , Irrigantes do Canal Radicular/uso terapêutico , Dente Decíduo , Cavidade Pulpar
17.
PLoS One ; 19(4): e0294474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558002

RESUMO

The growing prevalence of antibiotic resistance has made it imperative to search for new antimicrobial compounds derived from natural products. In the present study, Brevibacillus laterosporus TSA31-5, isolated from red clay soil, was chosen as the subject for conducting additional antibacterial investigations. The fractions exhibiting the highest antibacterial activity (30% acetonitrile eluent from solid phase extraction) were purified through RP-HPLC. Notably, two compounds (A and B) displayed the most potent antibacterial activity against both Escherichia coli and Staphylococcus aureus. ESI-MS/MS spectroscopy and NMR analysis confirmed that compound A corresponds to brevicidine and compound B to brevibacillin. Particularly, brevicidine displayed notable antibacterial activity against Gram-negative bacteria, with a minimum inhibitory concentration (MIC) range of 1-8 µg/mL. On the other hand, brevibacillin exhibited robust antimicrobial effectiveness against both Gram-positive bacterial strains (MIC range of 2-4 µg/mL) and Gram-negative bacteria (MIC range of 4-64 µg/mL). Scanning electron microscopy analysis and fluorescence assays uncovered distinctive morphological alterations in bacterial cell membranes induced by brevicidine and brevibacillin. These observations imply distinct mechanisms of antibacterial activity exhibited by the peptides. Brevicidine exhibited no hemolysis or cytotoxicity up to 512 µg/mL, comparable to the negative control. This suggests its promising therapeutic potential in treating infectious diseases. Conversely, brevibacillin demonstrated elevated cytotoxicity in in vitro assays. Nonetheless, owing to its noteworthy antimicrobial activity against pathogenic bacteria, brevibacillin could still be explored as a promising antimicrobial agent.


Assuntos
Anti-Infecciosos , Bacillus , Brevibacillus , Espectrometria de Massas em Tandem , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
18.
Biomed Res Int ; 2024: 4119960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559901

RESUMO

Background: Lactobacillus acidophilus is lactic acid bacteria that produce bacteriocins. Bacteriocins are antimicrobial peptides or proteins that exhibit activity against closely related bacteria. The aim of this study was to determine the effect of L. acidophilus ATCC 4356 bacteriocin against Staphylococcus aureus. Material and Methods. We used four different phenotypic methods for antimicrobial activities against two standard strains: methicillin-resistant S. aureus (MRSA) ATCC 33591 and methicillin-susceptible S. aureus (MSSA) ATCC 25923. The methods were (1) agar well diffusion, (2) overlay soft agar, (3) paper disk, and (4) modification of punch hole. The ammonium sulfate method was used to concentrate crude bacteriocin, and ultrafiltration and dialysis tubes were used to remove ammonium sulfate from the bacteriocins. Each method was repeated in triplicate. Result: L. acidophilus ATCC 4356 showed antimicrobial activity against both MRSA and MSSA standard strains only by the overlay soft agar method and not by the agar well diffusion, punch hole modification, and paper disk methods. No antimicrobial effects were observed in crude bacteriocins concentrated. Conclusion: The growth inhibition of S. aureus in overlay soft agar method may be due to the production of bacteriocin-like substances. The overlay soft agar method is a qualitative test, so there is a need for further study to optimize the conditions for the production of bacteriocin-like substances in the culture supernatant and precise comparison between the inhibitory activity and pheromone secretion of different strains.


Assuntos
Anti-Infecciosos , Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Bacteriocinas/metabolismo , Lactobacillus acidophilus , Ágar/metabolismo , Sulfato de Amônio/metabolismo , Sulfato de Amônio/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
19.
PeerJ ; 12: e16973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560449

RESUMO

The discovery of plant-derived compounds that are able to combat antibiotic-resistant pathogens is an urgent demand. Over years, Centaurea hyalolepis attracted considerable attention because of its beneficial medical properties. Phytochemical analyses revealed that Centaurea plant species contain several metabolites, such as sesquiterpene lactones (STLs), essential oils, flavonoids, alkaloids, and lignans.The organic extract of C. hyalolepis plant, collected in Palestine, showed significant antimicrobial properties towards a panel of Gram-negative and Gram-positive bacterial strains when the Minimal Inhibitory Concentration (MIC) values were evaluated by broth microdilution assays. A bio-guided fractionation of the active extract via multiple steps of column and thin layer chromatography allowed us to obtain three main compounds. The isolated metabolites were identified as the STLs cnicin, 11ß,13-dihydrosalonitenolide and salonitenolide by spectroscopic and spectrometric analyses. Cnicin conferred the strongest antimicrobial activity among the identified compounds. Moreover, the evaluation of its antibiofilm activity by biomass assays through crystal violet staining revealed almost 30% inhibition of biofilm formation in the case of A. baumannii ATCC 17878 strain. Furthermore, the quantification of carbohydrates and proteins present in the extracellular polymeric substance (EPS) revealed the ability of cnicin to significantly perturb biofilm structure. Based on these promising results, further investigations might open interesting perspectives to its applicability in biomedical field to counteract multidrug resistant infections.


Assuntos
Anti-Infecciosos , Centaurea , Sesquiterpenos , Centaurea/química , Matriz Extracelular de Substâncias Poliméricas , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia
20.
PeerJ ; 12: e17157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560453

RESUMO

Background: Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods: Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results: The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.


Assuntos
Anti-Infecciosos , Mel , Microbiota , Humanos , Abelhas/genética , Animais , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...