Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.892
Filtrar
1.
Washington, D.C.; PAHO; 2024-04-12. (PAHO/PHE/IHM/COVID-19/23-0012).
em Inglês | PAHO-IRIS | ID: phr-59510

RESUMO

Future pandemics caused by influenza or other respiratory viruses with epidemic and pandemic potential are highly likely. Given this threat, it is a priority for the Region of the Americas to define and strengthen a framework for the prevention and control of influenza, severe acute respiratory syndrome (SARS), coronavirus type 2, and other respiratory viruses in the context of the pandemic transition. This publication reflects the Pan American Health Organization’s permanent support to its Member States in the analysis of national response capacities for both seasonal influenza and other respiratory viruses with epidemic and pandemic potential. These capacities are achieved through the fulfillment of five objectives: 1) strengthen surveillance; 2) expand infection prevention and control policies; 3) strengthen epidemic and pandemic preparedness and response capacity; 4) promote operational research; and 5) improve risk communication and community engagement. It is essential to maintain the highest possible level of core national capacities for the early detection and control of diseases caused by respiratory viruses. This is crucial for managing future epidemics and pandemics since it directly contributes to the implementation of the core capacities of the International Health Regulations, as well as improvement of management, coordination, and planning, for the benefit of all the countries of the Region.


Assuntos
COVID-19 , Vacinas contra Influenza , Doenças Respiratórias , Epidemias , Pandemias , Planos de Emergência
2.
BMC Infect Dis ; 24(1): 407, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627637

RESUMO

BACKGROUND: Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS: To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS: We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS: Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.


Assuntos
COVID-19 , Epidemias , Vacinas , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vacinação , Imunidade Adaptativa
3.
Hist Cienc Saude Manguinhos ; 31: e2024009, 2024.
Artigo em Português | MEDLINE | ID: mdl-38629658

RESUMO

This article analyzes the reactions of Catholics linked to lay associations in the city of Salvador, in the period of the Spanish flu (1918) and smallpox (1919). Newspapers were the main sources used to identify the festivals and rites, both those practiced to ask for the intercession of the saints, and those that were suspended due to the need for social isolation. In spite of both diseases being transmissible and the short interval between the two epidemics, the analysis of the sources showed different reactions from the faithful regarding the measures of protection and the search for a cure.


O artigo analisa as reações dos católicos vinculados às associações leigas na cidade do Salvador, no período da gripe espanhola (1918) e da varíola (1919). Os jornais foram as principais fontes utilizadas para a identificação das festas e dos ritos, tanto dos praticados para pedir a intercessão dos santos quanto daqueles que foram suspensos em função da necessidade de isolamento social. Apesar de ambas as doenças serem transmissíveis e do curto espaço de tempo entre as duas epidemias, a análise das fontes evidenciou diferentes reações dos fiéis quanto às medidas de proteção e busca da cura.


Assuntos
Epidemias , Influenza Pandêmica, 1918-1919 , Catolicismo , Férias e Feriados , Brasil/epidemiologia
4.
PLoS One ; 19(4): e0298620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625847

RESUMO

In this manuscript, we developed a nonlinear fractional order Ebola virus with a novel piecewise hybrid technique to observe the dynamical transmission having eight compartments. The existence and uniqueness of a solution of piecewise derivative is treated for a system with Arzel'a-Ascoli and Schauder conditions. We investigate the effects of classical and modified fractional calculus operators, specifically the classical Caputo piecewise operator, on the behavior of the model. A model shows that a completely continuous operator is uniformly continuous, and bounded according to the equilibrium points. The reproductive number R0 is derived for the biological feasibility of the model with sensitivity analysis with different parameters impact on the model. Sensitivity analysis is an essential tool for comprehending how various model parameters affect the spread of illness. Through a methodical manipulation of important parameters and an assessment of their impact on Ro, we are able to learn more about the resiliency and susceptibility of the model. Local stability is established with next Matignon method and global stability is conducted with the Lyapunov function for a feasible solution of the proposed model. In the end, a numerical solution is derived with Newton's polynomial technique for a piecewise Caputo operator through simulations of the compartments at various fractional orders by using real data. Our findings highlight the importance of fractional operators in enhancing the accuracy of the model in capturing the intricate dynamics of the disease. This research contributes to a deeper understanding of Ebola virus dynamics and provides valuable insights for improving disease modeling and public health strategies.


Assuntos
Ebolavirus , Epidemias , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/epidemiologia , Aprendizagem , Saúde Pública
5.
Sci Rep ; 14(1): 8157, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589475

RESUMO

Most of the countries in the world are affected by the coronavirus epidemic that put people in danger, with many infected cases and deaths. The crowding factor plays a significant role in the transmission of coronavirus disease. On the other hand, the vaccines of the covid-19 played a decisive role in the control of coronavirus infection. In this paper, a fractional order epidemic model (SIVR) of coronavirus disease is proposed by considering the effects of crowding and vaccination because the transmission of this infection is highly influenced by these two factors. The nonlinear incidence rate with the inclusion of these effects is a better approach to understand and analyse the dynamics of the model. The positivity and boundedness of the fractional order model is ensured by applying some standard results of Mittag Leffler function and Laplace transformation. The equilibrium points are described analytically. The existence and uniqueness of the non-integer order model is also confirmed by using results of the fixed-point theory. Stability analysis is carried out for the system at both the steady states by using Jacobian matrix theory, Routh-Hurwitz criterion and Volterra-type Lyapunov functions. Basic reproductive number is calculated by using next generation matrix. It is verified that disease-free equilibrium is locally asymptotically stable if R 0 < 1 and endemic equilibrium is locally asymptotically stable if R 0 > 1 . Moreover, the disease-free equilibrium is globally asymptotically stable if R 0 < 1 and endemic equilibrium is globally asymptotically stable if R 0 > 1 . The non-standard finite difference (NSFD) scheme is developed to approximate the solutions of the system. The simulated graphs are presented to show the key features of the NSFD approach. It is proved that non-standard finite difference approach preserves the positivity and boundedness properties of model. The simulated graphs show that the implementation of control strategies reduced the infected population and increase the recovered population. The impact of fractional order parameter α is described by the graphical templates. The future trends of the virus transmission are predicted under some control measures. The current work will be a value addition in the literature. The article is closed by some useful concluding remarks.


Assuntos
COVID-19 , Epidemias , Humanos , Vacinação , COVID-19/epidemiologia , COVID-19/prevenção & controle , Número Básico de Reprodução , Epidemias/prevenção & controle , Extremidade Superior
6.
Front Public Health ; 12: 1343902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566799

RESUMO

Introduction: The World Health Organization (WHO) defined an infodemic as an overabundance of information, accurate or not, in the digital and physical space, accompanying an acute health event such as an outbreak or epidemic. It can impact people's risk perceptions, trust, and confidence in the health system, and health workers. As an immediate response, the WHO developed the infodemic management (IM) frameworks, research agenda, intervention frameworks, competencies, and processes for reference by health authorities. Objective: This systematic review explored the response to and during acute health events by health authorities and other organizations operating in health. It also assessed the effectiveness of the current interventions. Methods: On 26 June 2023, an online database search included Medline (Ovid), Embase, Cochrane Library, Scopus, Epistemonikos, and the WHO website. It included English-only, peer-reviewed studies or reports covering IM processes applied by health organizations that reported their effectiveness. There was no restriction on publication dates. Two independent reviewers conducted all screening, inclusion, and quality assessments, and a third reviewer arbitrated any disagreement between the two reviewers. Results: Reviewers identified 945 records. After a final assessment, 29 studies were included in the review and were published between 2021 and 2023. Some countries (Pakistan, Yemen, Spain, Italy, Hong Kong, Japan, South Korea, Singapore, United Kingdom, United States, New Zealand, Finland, South Korea, and Russia) applied different methods of IM to people's behaviors. These included but were not limited to launching media and TV conservations, using web and scientific database searches, posting science-based COVID-19 information, implementing online surveys, and creating an innovative ecosystem of digital tools, and an Early AI-supported response with Social Listening (EARS) platform. Most of the interventions were effective in containing the harmful effects of COVID-19 infodemic. However, the quality of the evidence was not robust. Discussion: Most of the infodemic interventions applied during COVID-19 fall within the recommended actions of the WHO IM ecosystem. As a result, the study suggests that more research is needed into the challenges facing health systems in different operational environments and country contexts in relation to designing, implementing, and evaluating IM interventions, strategies, policies, and systems.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Surtos de Doenças/prevenção & controle , Infodemia
7.
Sci Rep ; 14(1): 7902, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570524

RESUMO

The spatial movement of the human population from one region to another and the existence of super-spreaders are the main factors that enhanced the disease incidence. Super-spreaders refer to the individuals having transmitting ability to multiple pathogens. In this article, an epidemic model with spatial and temporal effects is formulated to analyze the impact of some preventing measures of COVID-19. The model is developed using six nonlinear partial differential equations. The infectious individuals are sub-divided into symptomatic, asymptomatic and super-spreader classes. In this study, we focused on the rigorous qualitative analysis of the reaction-diffusion model. The fundamental mathematical properties of the proposed COVID-19 epidemic model such as boundedness, positivity, and invariant region of the problem solution are derived, which ensure the validity of the proposed model. The model equilibria and its stability analysis for both local and global cases have been presented. The normalized sensitivity analysis of the model is carried out in order to observe the crucial factors in the transmission of infection. Furthermore, an efficient numerical scheme is applied to solve the proposed model and detailed simulation are performed. Based on the graphical observation, diffusion in the context of confined public gatherings is observed to significantly inhibit the spread of infection when compared to the absence of diffusion. This is especially important in scenarios where super-spreaders may play a major role in transmission. The impact of some non-pharmaceutical interventions are illustrated graphically with and without diffusion. We believe that the present investigation will be beneficial in understanding the complex dynamics and control of COVID-19 under various non-pharmaceutical interventions.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Dinâmica não Linear , Simulação por Computador , Difusão
8.
Sci Rep ; 14(1): 7960, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575651

RESUMO

Respiratory sensitivity and pneumonia are possible outcomes of the coronavirus (COVID-19). Surface characteristics like temperature and sunshine affect how long the virus survives. This research article analyzes COVID-19 mathematical model behavior based on symptomatic and non-symptomatic individuals. In the reproductive model, the best result indicates the intensity of the epidemic. Our model remained stable at a certain point under controlled conditions after we evaluated a specific element. This approach is in place of traditional approaches such as Euler's and Runge-Kutta's. An unusual numerical approach known as the non-standard finite difference (NSFD) scheme is used in this article. This numerical approach gives us positivity. A dependable numerical analysis allowed us to evaluate different approaches and verify our theoretical results. Unlike the widely used Euler and RK4 approaches, we investigated the benefits of implementing NSFD schemes. By numerically simulating COVID-19 in a variety of scenarios, we demonstrated how our theoretical concepts work. The simulation findings support the usefulness of both approaches.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Modelos Teóricos , Simulação por Computador
9.
Health Res Policy Syst ; 22(1): 43, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576011

RESUMO

BACKGROUND: There are several definitions of resilience in health systems, many of which share some characteristics, but no agreed-upon framework is universally accepted. Here, we review the concept of resilience, identifying its definitions, attributes, antecedents and consequences, and present the findings of a concept analysis of health system resilience. METHODS: We follow Schwarz-Barcott and Kim's hybrid model, which consists of three phases: theoretical, fieldwork and final analysis. We identified the concept definitions, attributes, antecedents and consequences of health system resilience and constructed an evidence-informed framework on the basis of the findings of this review. We searched PubMed, PsycINFO, CINAHL Complete, EBSCOhost-Academic Search and Premier databases and downloaded identified titles and abstracts on Covidence. We screened 3357 titles and removed duplicate and ineligible records; two reviewers then screened each title, and disagreements were resolved by discussion with the third reviewer. From the 130 eligible manuscripts, we identified the definitions, attributes, antecedents and consequences using a pre-defined data extraction form. RESULTS: Resilience antecedents are decentralization, available funds, investments and resources, staff environment and motivation, integration and networking and finally, diversification of staff. The attributes are the availability of resources and funds, adaptive capacity, transformative capacity, learning and advocacy and progressive leadership. The consequences of health system resilience are improved health system performance, a balanced governance structure, improved expenditure and financial management of health and maintenance of health services that support universal health coverage (UHC) throughout crises. CONCLUSION: A resilient health system maintains quality healthcare through times of crisis. During the coronavirus disease 2019 (COVID-19) epidemic, several seemingly robust health systems were strained under the increased demand, and services were disrupted. As such, elements of resilience should be integrated into the functions of a health system to ensure standardized and consistent service quality and delivery. We offer a systematic, evidence-informed method for identifying the attributes of health system resilience, intending to eventually be used to develop a measuring tool to evaluate a country's health system resilience performance.


Assuntos
COVID-19 , Epidemias , Resiliência Psicológica , Humanos , Aprendizagem , Gastos em Saúde
10.
BMC Public Health ; 24(1): 1032, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615002

RESUMO

BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) signals a recurring risk in Eurasia in recent years owing to its continued rise in case notifications and the extension of geographical distribution. This study was undertaken to investigate the spatiotemporal drivers and incidence heterogeneity of HFRS transmission in Shandong Province. METHODS: The epidemiological data for HFRS, meteorological data and socioeconomic data were obtained from China Information System for Disease Control and Prevention, China Meteorological Data Sharing Service System, and Shandong Statistical Yearbook, respectively. The spatial-temporal multicomponent model was employed to analyze the values of spatial-temporal components and the heterogeneity of HFRS transmission across distinct regions. RESULTS: The total effect values of the autoregressive, epidemic, and endemic components were 0.451, 0.187, and 0.033, respectively, exhibiting significant heterogeneity across various cities. This suggested a pivotal role of the autoregressive component in propelling HFRS transmission in Shandong Province. The epidemic component of Qingdao, Weifang, Yantai, Weihai, and Jining declined sharply at the onset of 2020. The random effect identified distinct incidence levels associated with Qingdao and Weifang, signifying regional variations in HFRS occurrence. CONCLUSIONS: The autoregressive component emerged as a significant driver in the transmission of HFRS in Shandong Province. Targeted preventive measures should be strategically implemented across various regions, taking into account the predominant component influencing the epidemic.


Assuntos
Epidemias , Febre Hemorrágica com Síndrome Renal , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Incidência , China/epidemiologia , Cidades
11.
J Math Biol ; 88(6): 63, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619652

RESUMO

Age structure is one of the crucial factors in characterizing the heterogeneous epidemic transmission. Vaccination is regarded as an effective control measure for prevention and control epidemics. Due to the shortage of vaccine capacity during the outbreak of epidemics, how to design vaccination policy has become an urgent issue in suppressing the disease transmission. In this paper, we make an effort to propose an age-structured SVEIHR model with the disease-caused death to take account of dynamics of age-related vaccination policy for better understanding disease spread and control. We present an explicit expression of the basic reproduction number R 0 , which determines whether or not the disease persists, and then establish the existence and stability of endemic equilibria under certain conditions. Numerical simulations are illustrated to show that the age-related vaccination policy has a tremendous influence on curbing the disease transmission. Especially, vaccination of people over 65 is better than for people aged 21-65 in terms of rapid eradication of the disease in Italy.


Assuntos
Epidemias , Vacinação , Humanos , Surtos de Doenças/prevenção & controle , Número Básico de Reprodução , Epidemias/prevenção & controle , Itália
12.
Emerg Infect Dis ; 30(13): S75-S79, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561818

RESUMO

In 2019, the US Department of Health and Human Services launched the Ending the HIV Epidemic in the US initiative (EHE) with the goal of reducing new HIV infections by 90% by 2030. This initiative identifies 4 pillars (diagnose, treat, prevent, and respond) to address the HIV epidemic in the United States. To advance the EHE goals, the Federal Bureau of Prisons (FBOP) has implemented interventions at all points of the HIV care continuum. The FBOP has addressed the EHE pillar of prevention through implementing preexposure prophylaxis, developing a strategy to decrease the risk of new HIV infection, and providing guidance to FBOP healthcare providers. This article describes the implementation of programs to improve the HIV care continuum and end the epidemic of HIV within the FBOP including a review of methodology to implement an HIV preexposure prophylaxis program.


Assuntos
Epidemias , Infecções por HIV , Profilaxia Pré-Exposição , Humanos , Estados Unidos/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Prisões , Profilaxia Pré-Exposição/métodos , Epidemias/prevenção & controle , Continuidade da Assistência ao Paciente
14.
J Math Biol ; 88(6): 60, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600396

RESUMO

One-dimensional discrete-time population models, such as those that involve Logistic or Ricker growth, can exhibit periodic and chaotic dynamics. Expanding the system by one dimension to incorporate epidemiological interactions causes an interesting complexity of new behaviors. Here, we examine a discrete-time two-dimensional susceptible-infectious (SI) model with Ricker growth and show that the introduction of infection can not only produce a distinctly different bifurcation structure than that of the underlying disease-free system but also lead to counter-intuitive increases in population size. We use numerical bifurcation analysis to determine the influence of infection on the location and types of bifurcations. In addition, we examine the appearance and extent of a phenomenon known as the 'hydra effect,' i.e., increases in total population size when factors, such as mortality, that act negatively on a population, are increased. Previous work, primarily focused on dynamics at fixed points, showed that the introduction of infection that reduces fecundity to the SI model can lead to a so-called 'infection-induced hydra effect.' Our work shows that even in such a simple two-dimensional SI model, the introduction of infection that alters fecundity or mortality can produce dynamics can lead to the appearance of a hydra effect, particularly when the disease-free population is at a cycle.


Assuntos
Epidemias , Dinâmica Populacional , Densidade Demográfica , Fertilidade , Modelos Biológicos
16.
PLoS One ; 19(4): e0297093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574059

RESUMO

BACKGROUND: We previously demonstrated that when vaccines prevent infection, the dynamics of mixing between vaccinated and unvaccinated sub-populations is such that use of imperfect vaccines markedly decreases risk for vaccinated people, and for the population overall. Risks to vaccinated people accrue disproportionately from contact with unvaccinated people. In the context of the emergence of Omicron SARS-CoV-2 and evolving understanding of SARS-CoV-2 epidemiology, we updated our analysis to evaluate whether our earlier conclusions remained valid. METHODS: We modified a previously published Susceptible-Infectious-Recovered (SIR) compartmental model of SARS-CoV-2 with two connected sub-populations: vaccinated and unvaccinated, with non-random mixing between groups. Our expanded model incorporates diminished vaccine efficacy for preventing infection with the emergence of Omicron SARS-CoV-2 variants, waning immunity, the impact of prior immune experience on infectivity, "hybrid" effects of infection in previously vaccinated individuals, and booster vaccination. We evaluated the dynamics of an epidemic within each subgroup and in the overall population over a 10-year time horizon. RESULTS: Even with vaccine efficacy as low as 20%, and in the presence of waning immunity, the incidence of COVID-19 in the vaccinated subpopulation was lower than that among the unvaccinated population across the full 10-year time horizon. The cumulative risk of infection was 3-4 fold higher among unvaccinated people than among vaccinated people, and unvaccinated people contributed to infection risk among vaccinated individuals at twice the rate that would have been expected based on the frequency of contacts. These findings were robust across a range of assumptions around the rate of waning immunity, the impact of "hybrid immunity", frequency of boosting, and the impact of prior infection on infectivity in unvaccinated people. INTERPRETATION: Although the emergence of the Omicron variants of SARS-CoV-2 has diminished the protective effects of vaccination against infection with SARS-CoV-2, updating our earlier model to incorporate loss of immunity, diminished vaccine efficacy and a longer time horizon, does not qualitatively change our earlier conclusions. Vaccination against SARS-CoV-2 continues to diminish the risk of infection among vaccinated people and in the population as a whole. By contrast, the risk of infection among vaccinated people accrues disproportionately from contact with unvaccinated people.


Assuntos
COVID-19 , Epidemias , Vacinas , Humanos , Evasão da Resposta Imune , COVID-19/epidemiologia , COVID-19/prevenção & controle , Modelos Epidemiológicos , SARS-CoV-2 , Vacinação
17.
Sci Rep ; 14(1): 7170, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570534

RESUMO

Since the onset of the seventh cholera pandemic, Ethiopia has been affected by recurrent epidemics. However, the epidemiology of cholera in this country remains poorly understood. This study aimed to describe cholera outbreak characteristics in Ethiopia from 2015 to 2021. During this period, Ethiopia experienced four epidemic waves. The first wave involved nationwide outbreaks during the second half of 2016 followed by outbreaks predominantly affecting Somali Region in 2017. The second wave primarily affected Tigray and Afar Regions. During the third wave, multiple smaller-scale outbreaks occurred during 2019. The fourth wave was limited to Bale Zone (Oromia Region) in 2021. Overall, a north to south shift was observed over the course of the study period. Major cholera transmission factors included limited access to safe water and sanitation facilities. Severe weather events (drought and flooding) appear to aggravate cholera diffusion. Cholera transmission between Ethiopia and nearby countries (Kenya and Somalia), likely plays a major role in regional cholera dynamics. Overall, this study provides the first understanding of recent spatiotemporal cholera dynamics in Ethiopia to inform cholera control and elimination strategies.


Assuntos
Cólera , Epidemias , Humanos , Etiópia/epidemiologia , Surtos de Doenças , Quênia , Pandemias
19.
Front Public Health ; 12: 1277457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481850

RESUMO

Objective: The purpose of this study is to provide experience and evidence support for countries to deal with similar public health emergencies such as COVID-19 by comparing and analyzing the measures taken by six countries in epidemic prevention and control. Methods: This study extracted public data on COVID-19 from the official website of various countries and used ecological comparative research methods to compare the specific situation of indicators such as daily tests per thousand people, stringency index, and total vaccinations per hundred people in countries. Results: The cumulative death toll in China, Germany and Australia was significantly lower than that in the United States, South Africa and Italy. Expanding the scale of testing has helped control the spread of the epidemic to some extent. When the epidemic situation is severe, the stringency index increases, and when the epidemic situation tends to ease, the stringency index decreases. Increased vaccination rates, while helping to build an immune barrier, still need to be used in conjunction with non-drug interventions. Conclusion: The implementation of non-drug interventions and vaccine measures greatly affected the epidemic prevention and control effect. In responding to public health emergencies such as the COVID-19 epidemic, countries should draw on international experience, closely align with their national conditions, follow the laws of epidemiology, actively take non-drug intervention measures, and vigorously promote vaccine research and development and vaccination.


Assuntos
COVID-19 , Epidemias , Vacinas , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Emergências
20.
Phys Rev E ; 109(2-1): 024303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491705

RESUMO

Contact tracing, the practice of isolating individuals who have been in contact with infected individuals, is an effective and practical way of containing disease spread. Here we show that this strategy is particularly effective in the presence of social groups: Once the disease enters a group, contact tracing not only cuts direct infection paths but can also pre-emptively quarantine group members such that it will cut indirect spreading routes. We show these results by using a deliberately stylized model that allows us to isolate the effect of contact tracing within the clique structure of the network where the contagion is spreading. This will enable us to derive mean-field approximations and epidemic thresholds to demonstrate the efficiency of contact tracing in social networks with small groups. This analysis shows that contact tracing in networks with groups is more efficient the larger the groups are. We show how these results can be understood by approximating the combination of disease spreading and contact tracing with a complex contagion process where every failed infection attempt will lead to a lower infection probability in the following attempts. Our results illustrate how contact tracing in real-world settings can be more efficient than predicted by models that treat the system as fully mixed or the network structure as locally treelike.


Assuntos
Busca de Comunicante , Epidemias , Humanos , Busca de Comunicante/métodos , Quarentena , Epidemias/prevenção & controle , Rede Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...