Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.470
Filtrar
1.
Nat Commun ; 15(1): 3219, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622143

RESUMO

Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Such trace gas oxidation is recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. However, it is unclear whether archaea can also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurs across a wide range of temperatures (10 to 70 °C) and enhances ATP production during starvation-induced persistence under temperate conditions. The genome of A. brierleyi encodes a canonical CO dehydrogenase and four distinct [NiFe]-hydrogenases, which are differentially produced in response to electron donor and acceptor availability. Another archaeon, Metallosphaera sedula, can also oxidize atmospheric H2. Our results suggest that trace gas oxidation is a common trait of Sulfolobales archaea and may play a role in their survival and niche expansion, including during dispersal through temperate environments.


Assuntos
Acidianus , Archaea , Temperatura , Ecossistema , Oxirredução , Hidrogênio
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612474

RESUMO

The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.


Assuntos
Chlorella vulgaris , Hidrogenase , Metais , Ferro , Hidrogênio , Enxofre , Água
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612655

RESUMO

In this paper we would like to highlight the problems of conceiving the "Hydrogen Bond" (HB) as a real short-range, directional, electrostatic, attractive interaction and to reframe its nature through the non-approximated view of condensed matter offered by a Quantum Electro-Dynamic (QED) perspective. We focus our attention on water, as the paramount case to show the effectiveness of this 40-year-old theoretical background, which represents water as a two-fluid system (where one of the two phases is coherent). The HB turns out to be the result of the electromagnetic field gradient in the coherent phase of water, whose vacuum level is lower than in the non-coherent (gas-like) fraction. In this way, the HB can be properly considered, i.e., no longer as a "dipolar force" between molecules, but as the phenomenological effect of their collective thermodynamic tendency to occupy a lower ground state, compatible with temperature and pressure. This perspective allows to explain many "anomalous" behaviours of water and to understand why the calculated energy associated with the HB should change when considering two molecules (water-dimer), or the liquid state, or the different types of ice. The appearance of a condensed, liquid, phase at room temperature is indeed the consequence of the boson condensation as described in the context of spontaneous symmetry breaking (SSB). For a more realistic and authentic description of water, condensed matter and living systems, the transition from a still semi-classical Quantum Mechanical (QM) view in the first quantization to a Quantum Field Theory (QFT) view embedded in the second quantization is advocated.


Assuntos
Campos Eletromagnéticos , Polímeros , Ligação de Hidrogênio , Água , Hidrogênio
4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612720

RESUMO

Safety is fundamental for the practical development and application of energetic materials. Three tricyclic energetic compounds, namely, 1,3-di(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (ATDT), 5'-nitro-3-(1H-tetrazol-5-yl)-2'H-[1,3'-bi(1,2,4-triazol)]-5-amine (ATNT), and 1-(3,4-dinitro-1H-pyrazol-5-yl)-3-(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (ATDNP), were effectively synthesized through a simple two-step synthetic route. The introduction of intramolecular hydrogen bonds resulted in excellent molecular planarity for the three new compounds. Additionally, they exhibit regular crystal packing, leading to numerous intermolecular hydrogen bonds and π-π interactions. Benefiting from planar tricyclic structural features, ATDT, ATNT, and ATDNP are insensitive (IS > 60 J, FS = 360 N) when exposed to external stimuli. Furthermore, ATNT (Td = 361.1 °C) and ATDNP (Td = 317.0 °C) exhibit high decomposition temperatures and satisfying detonation performance. The intermolecular hydrogen bonding that produced this planar tricyclic molecular structure serves as a model for the creation of innovative multiple heterocycle energetic materials with excellent stability.


Assuntos
Aminas , Bandagens , Ligação de Hidrogênio , Hidrogênio
5.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612848

RESUMO

The rational design of advanced electrocatalysts at the molecular or atomic level is important for improving the performance of hydrogen evolution reactions (HERs) and replacing precious metal catalysts. In this study, we describe the fabrication of electrocatalysts based on Fe, Co, or Ni single atoms supported on titanium carbide (TiC) using the molten salt method, i.e., TiC-FeSA, TiC-CoSA, or TiC-NiSA, to enhance HER performance. The introduction of uniformly distributed transition-metal single atoms successfully reduces the overpotential of HERs. Overpotentials of TiC-FeSA at 10 mA cm-2 are 123.4 mV with 61.1 mV dec-1 Tafel slope under acidic conditions and 184.2 mV with 85.1 mV dec-1 Tafel slope under alkaline conditions, which are superior to TiC-NiSA and TiC-CoSA. TiC samples loaded with transition-metal single atoms exhibit high catalytic activity and long stability under acidic and basic conditions. Density functional theory calculations indicate that the introduction of transition-metal single atoms effectively reduces the HER barrier of TiC-based electrocatalysts.


Assuntos
Ferro , Níquel , Titânio , Cobalto , Hidrogênio
6.
PLoS One ; 19(4): e0301333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557854

RESUMO

The scale of multi-microgrid (MMG) and hydrogen fuel cell vehicles (HFCVs) is increasing dramatically with the increase in the new energy penetration ratio, and developing an integrated energy system containing a multi-microgrid for hydrogen fuel vehicles brings great challenges to power grid operation. Focusing on the difficulties of the access of multiple microgrids for the low-carbon and economic operation of the system, this paper proposes an optimal interconnected heterogeneous multi-microgrid power-heat-carbon scheduling strategy for hydrogen-fueled vehicles. Firstly, an HFCV model is established, and then an optimal scheduling model is constructed for the cooperative trading of power-heat-carbon in a multi-microgrid, on the basis of which the low-carbon economic operation of the multi-microgrid is realized. The results of the case study show that the scheduling strategy in this paper reduces carbon emissions by about 7.12% and costs by about 3.41% compared with the independent operation of the multi-microgrid. The degrees of interaction of each multi-microgrid are also analyzed under different HFCV penetration rates.


Assuntos
Carbono , Hidrogênio , Temperatura Alta , Custos e Análise de Custo
7.
Sci Rep ; 14(1): 8248, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589617

RESUMO

Characterization of the microbial activity impacts on transport and storage of hydrogen is a crucial aspect of successful Underground Hydrogen Storage (UHS). Microbes can use hydrogen for their metabolism, which can then lead to formation of biofilms. Biofilms can potentially alter the wettability of the system and, consequently, impact the flow dynamics and trapping mechanisms in the reservoir. In this study, we investigate the impact of microbial activity on wettability of the hydrogen/brine/rock system, using the captive-bubble cell experimental approach. Apparent contact angles are measured for bubbles of pure hydrogen in contact with a solid surface inside a cell filled with living brine which contains sulphate reducing microbes. To investigate the impact of surface roughness, two different solid samples are used: a "rough" Bentheimer Sandstone sample and a "smooth" pure Quartz sample. It is found that, in systems where buoyancy and interfacial forces are the main acting forces, the impact of biofilm formation on the apparent contact angle highly depends on the surface roughness. For the "rough" Bentheimer sandstone, the apparent contact angle was unchanged by biofilm formation, while for the smooth pure Quartz sample the apparent contact angle decreased significantly, making the system more water-wet. This decrease in apparent contact angle is in contrast with an earlier study present in the literature where a significant increase in contact angle due to microbial activity was reported. The wettability of the biofilm is mainly determined by the consistency of the Extracellular Polymeric Substances (EPS) which depends on the growth conditions in the system. Therefore, to determine the impact of microbial activity on the wettability during UHS will require accurate replication of the reservoir conditions including surface roughness, chemical composition of the brine, the microbial community, as well as temperature, pressure and pH-value conditions.


Assuntos
Hidrogênio , Quartzo , Molhabilidade , Sais
8.
Microb Biotechnol ; 17(4): e14452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568755

RESUMO

Gas fermentation of CO2 and H2 is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO to ethanol and presents an opportunity for CO2-to-ethanol processes. As we have previously characterized its CO2/H2 chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO2/H2. Seven ALE lineages were generated, all with improved specific growth rates. ALE conducted in the presence of 2% CO along with CO2/H2 generated Evolved lineage D, which showed the highest ethanol titres amongst all the ALE lineages during the fermentation of CO2/H2. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Multi-omics analyses at steady state revealed that Evolved D has widespread proteome and intracellular metabolome changes. However, the uptake and production rates and titres remain unaltered until investigating their maximum dilution rate. Yet, we provide numerous insights into CO2/H2 metabolism via these multi-omics data and link these results to mutations, suggesting novel targets for metabolic engineering in this bacterium.


Assuntos
Dióxido de Carbono , Clostridium , Proteoma , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Fermentação , Etanol/metabolismo , Metaboloma
9.
J Chromatogr A ; 1721: 464850, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38564932

RESUMO

The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and McGowan's characteristic volume, V, to model transfer properties between condensed phases. The V descriptor is assigned from structure. For compounds liquid at 20 °C the E descriptor can be assigned from the characteristic volume and its refractive index. The E descriptor for compounds solid at 20 °C and the S, A, and B descriptors are experimental properties traditionally assigned from chromatographic, liquid-liquid partition, and solubility measurements. In this report liquid-liquid partition constants in totally organic and aqueous biphasic systems are evaluated as a standalone technique for descriptor assignments. Using six totally organic biphasic systems the S, A, and B descriptors were assigned with an average absolute deviation (AAD) of about 0.04, 0.03, and 0.04, respectively, compared with the best estimate of the true descriptor values for 65 compounds. The E descriptor for compounds solid at 20 °C can only be estimated with an AAD of approximately 0.1. For six aqueous biphasic systems the B descriptor is assigned with a lower AAD of 0.028 and higher AAD of 0.08 and 0.05 for the S and A descriptors, respectively, than for the totally organic biphasic systems for compounds with a reliable value for the E descriptor. The preferred system for descriptor assignments utilizes both totally organic biphasic systems (heptane-1,1,1-trifluoroethanol, isopentyl ether-propylene carbonate, isopentyl ether-ethanolamine, heptane-ethylene glycol, heptane-formamide, and 1,2-dichloroethane-ethylene glycol) and aqueous biphasic systems (octanol-water, cyclohexane-water) with the possible substitution of some systems with alternative systems of similar selectivity. For 55 varied compounds this combination of eight organic and aqueous biphasic systems resulted in an AAD of approximately 0.03, 0.02, and 0.02 for the S, A, and B descriptors compared to the best estimate of the true descriptor value. For 30 compounds solid at 20 °C the AAD for the E descriptor of 0.11 is poorly assigned. The relative average absolute deviation in percent (RAAD) corresponds to 9.7 %, 3.1 %. 4.0 % and 8.3 % for E, S, A, and B, respectively, for the eight biphasic systems. Liquid-liquid partition is compared to reversed-phase liquid and gas chromatography as a standalone technique for descriptor assignments.


Assuntos
Éteres , Água , Água/química , Heptanos/química , Etilenoglicóis , Hidrogênio
10.
Nat Commun ; 15(1): 3349, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637496

RESUMO

Catalysed C-H activation has emerged as a transformative platform for molecular synthesis and provides new opportunities in drug discovery by late-stage functionalisation (LSF) of complex molecules. Notably, small aliphatic motifs have gained significant interest in medicinal chemistry for their beneficial properties and applications as sp3-rich functional group bioisosteres. In this context, we disclose a versatile strategy with broad applicability for the ruthenium-catalysed late-stage meta-C(sp2)-H alkylation of pharmaceuticals. This general protocol leverages numerous directing groups inherently part of bioactive scaffolds to selectivity install a variety of medicinally relevant bifunctional alkyl units within drug compounds. Our strategy enables the direct modification of unprotected lead structures to quickly generate an array of pharmaceutically useful analogues without resorting to de novo syntheses. Moreover, productive late-stage modulation of key biological characteristics of drug candidates upon remote C-H alkylation proves viable, highlighting the major benefits of our approach to offer in drug development programmes.


Assuntos
Hidrogênio , Rutênio , Hidrogênio/química , Alquilação , Rutênio/química , Catálise , Preparações Farmacêuticas
11.
Biotechnol J ; 19(4): e2300567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581100

RESUMO

An attractive application of hydrogenases, combined with the availability of cheap and renewable hydrogen (i.e., from solar and wind powered electrolysis or from recycled wastes), is the production of high-value electron-rich intermediates such as reduced nicotinamide adenine dinucleotides. Here, the capability of a very robust and oxygen-resilient [FeFe]-hydrogenase (CbA5H) from Clostridium beijerinckii SM10, previously identified in our group, combined with a reductase (BMR) from Bacillus megaterium (now reclassified as Priestia megaterium) was tested. The system shows a good stability and it was demonstrated to reach up to 28 ± 2 nmol NADPH regenerated s-1 mg of hydrogenase-1 (i.e., 1.68 ± 0.12 U mg-1, TOF: 126 ± 9 min-1) and 0.46 ± 0.04 nmol NADH regenerated s-1 mg of hydrogenase-1 (i.e., 0.028 ± 0.002 U mg-1, TOF: 2.1 ± 0.2 min-1), meaning up to 74 mg of NADPH and 1.23 mg of NADH produced per hour by a system involving 1 mg of CbA5H. The TOF is comparable with similar systems based on hydrogen as regenerating molecule for NADPH, but the system is first of its kind as for the [FeFe]-hydrogenase and the non-physiological partners used. As a proof of concept a cascade reaction involving CbA5H, BMR and a mutant BVMO from Acinetobacter radioresistens able to oxidize indole is presented. The data show how the cascade can be exploited for indigo production and multiple reaction cycles can be sustained using the regenerated NADPH.


Assuntos
Hidrogenase , Hidrogenase/química , NAD , Hidrogênio/química , NADP , Oxirredutases
12.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611957

RESUMO

This study evaluated the feasibility of contextually producing hydrogen, microbial proteins, and polyhydroxybutyrate (PHB) using a mixed culture of purple phototrophic bacteria biomass under photo fermentative conditions. To this end, three consecutive batch tests were conducted to analyze the biomass growth curve and to explore the potential for optimizing the production process. Experimental findings indicated that inoculating reactors with microorganisms from the exponential growth phase reduced the duration of the process. Furthermore, the most effective approach for simultaneous hydrogen production and the valorization of microbial biomass was found when conducting the process during the exponential growth phase of the biomass. At this stage, achieved after 3 days of fermentation, the productivities of hydrogen, PHB, and microbial proteins were measured at 63.63 L/m3 d, 0.049 kg/m3 d, and 0.045 kg/m3 d, respectively. The biomass composition comprised a total intracellular compound percentage of 56%, with 27% representing PHB and 29% representing proteins. Under these conditions, the estimated daily revenue was maximized, amounting to 0.6 $/m3 d.


Assuntos
Bactérias , Hidrogênio , Fermentação , Biomassa
13.
PLoS One ; 19(4): e0296845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635742

RESUMO

Electron cyclotron resonance heating method of Particle-in-Cell code was used to analyze heating phenomena, axial kinetic energy, and self-consistent electric field of confined electron plasma in ELTRAP device by hydrogen and helium background gases. The electromagnetic simulations were performed at a constant power of 3.8 V for different RF drives (0.5 GHz- 8 GHz), as well as for 1 GHz constant frequency at these varying amplitudes (1 V-3.8 V). The impacts of axial and radial temperatures were found maximum at 1.8 V and 5 GHz as compared to other amplitudes and frequencies for both background gases. These effects are higher at varying radio frequencies due to more ionization and secondary electrons production and maximum recorded radial temperature for hydrogen background gas was 170.41 eV. The axial kinetic energy impacts were found more effective in the outer radial part (between 0.03 and 0.04 meters) of the ELTRAP device due to applied VRF through C8 electrode. The self-consistent electric field was found higher for helium background gas at 5 GHz RF than other amplitudes and radio frequencies. The excitation and ionization rates were found to be higher along the radial direction (r-axis) than the axial direction (z-axis) in helium background gas as compared to hydrogen background gas. The current studies are advantageous for nuclear physics applications, beam physics, microelectronics, coherent radiation devices and also in magnetrons.


Assuntos
Ciclotrons , Elétrons , Calefação , Hélio , Hidrogênio
14.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575972

RESUMO

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Assuntos
Galinhas , Plumas , Animais , Anaerobiose , Galinhas/metabolismo , Hidrogênio/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustíveis , Reatores Biológicos
15.
Molecules ; 29(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474637

RESUMO

Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate-bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation initiated by hydroxyl radicals can also be caused by carbonate radicals. To date, theoretical research on reactions of hydrogen abstraction from and radical addition to polyunsaturated fatty acids (PUFAs) of carbonate radicals has not been carried out systematically. This paper employs (3Z,6Z)-nona-3,6-diene (NDE) as a model for polyunsaturated fatty acids (PUFAs). Density functional theory (DFT) with the CAM-B3LYP method at the 6-311+g(d,p) level was used to calculate the differences in reactivity of carbonate radicals abstracting hydrogen from different positions of NDE and their addition to the double bonds of NDE under lipid solvent conditions with a dielectric constant of 4.0 (CPCM model). Grimme's empirical dispersion correction was taken into account through the D3 scheme. The energy barrier, reaction rate constants, internal energy, enthalpy and Gibbs free energy changes in these reactions were calculated With zero-point vibrational energy (ZPVE) corrections. The results indicated that carbonate radicals initiate lipid peroxidation primarily through hydrogen abstraction from diallyl carbon atoms. The reaction of hydrogen abstraction from diallyl carbon atoms exhibits the highest reaction rate, with a reaction rate constant approximately 43-fold greater than the second-ranked hydrogen abstraction from allyl carbon atoms. This process has the lowest energy barrier, internal energy, enthalpy, and Gibbs free energy changes, indicating that it is also the most spontaneous process.


Assuntos
Ácidos Graxos Insaturados , Hidrogênio , Peroxidação de Lipídeos , Hidrogênio/química , Ácidos Graxos Insaturados/química , Carbonatos , Radical Hidroxila/química , Carbono , Radicais Livres/química
16.
Biotechnol Adv ; 72: 108344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521282

RESUMO

Biohydrogen (Bio-H2) is widely recognized as a sustainable and environmentally friendly energy source, devoid of any detrimental impact on the environment. Lignocellulosic biomass (LB) is a readily accessible and plentiful source material that can be effectively employed as a cost-effective and sustainable substrate for Bio-H2 production. Despite the numerous challenges, the ongoing progress in LB pretreatment technology, microbial fermentation, and the integration of molecular biology techniques have the potential to enhance Bio-H2 productivity and yield. Consequently, this technology exhibits efficiency and the capacity to meet the future energy demands associated with the valorization of recalcitrant biomass. To date, several pretreatment approaches have been investigated in order to improve the digestibility of feedstock. Nevertheless, there has been a lack of comprehensive systematic studies examining the effectiveness of pretreatment methods in enhancing Bio-H2 production through dark fermentation. Additionally, there is a dearth of economic feasibility evaluations pertaining to this area of research. Thus, this review has conducted comparative studies on the technological and economic viability of current pretreatment methods. It has also examined the potential of these pretreatments in terms of carbon neutrality and circular economy principles. This review paves the way for a new opportunity to enhance Bio-H2 production with technological approaches.


Assuntos
Hidrogênio , Lignina , Biomassa , Hidrogênio/química , Lignina/química , Fermentação , Biocombustíveis
17.
Sci Total Environ ; 926: 171943, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527546

RESUMO

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Assuntos
Cunninghamia , Microbiota , Matéria Orgânica Dissolvida , Nitratos/análise , Lignina/metabolismo , Taninos/análise , Taninos/metabolismo , Solo/química , Compostos Orgânicos/análise , Compostos de Enxofre/metabolismo , Nitrogênio/análise , Carbono/análise , Hidrogênio/análise , Oxigênio/análise
18.
Int J Biol Macromol ; 265(Pt 2): 131084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521312

RESUMO

Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.


Assuntos
Hidrogênio , Lignina , Lignina/química , Solventes/química , Fenóis , Catálise
19.
Chemosphere ; 355: 141785, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537708

RESUMO

Photoreforming is a clean photocatalytic technology for simultaneous plastic waste degradation and hydrogen fuel production, but there are still limited active and stable catalysts for this process. This work introduces the brookite polymorph of TiO2 as an active photocatalyst for photoreforming with an activity higher than anatase and rutile polymorphs for both hydrogen production and plastic degradation. Commercial brookite successfully converts polyethylene terephthalate (PET) plastic to acetic acid under light. The high activity of brookite is attributed to good charge separation, slow decay and moderate electron trap energy, which lead to a higher generation of hydrogen and hydroxyl radicals and accordingly enhanced photo-oxidation of PET plastic. These results introduce brookite as a stable and active catalyst for the photoconversion of water contaminated with microplastics to value-added organic compounds and hydrogen.


Assuntos
Ácido Acético , Plásticos , Titânio/química , Hidrogênio
20.
Analyst ; 149(8): 2388-2398, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462973

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a versatile bioanalytical technique for protein analysis. Since the reliability of HDX-MS analysis considerably depends on the retention of deuterium labels in the post-labeling workflow, deuterium/hydrogen (D/H) back exchange prevention strategies, including decreasing the pH, temperature, and exposure time to protic sources of the deuterated samples, are widely adopted in the conventional HDX-MS protocol. Herein, an alternative and effective back exchange prevention strategy based on the encapsulation of a millimeter droplet of a labeled peptide solution in a water-immiscible organic solvent (cyclohexane) is proposed. Cyclohexane was used to prevent the undesirable uptake of water by the droplet from the atmospheric vapor through the air-water interface. Using the pepsin digest of deuterated myoglobin, our results show that back exchange kinetics of deuterated peptides is retarded in a millimeter droplet as compared to that in the bulk solution. Performing pepsin digestion directly in a water-in-oil droplet at room temperature (18-21 °C) was found to preserve more deuterium labels than that in the bulk digestion with an ice-water bath. Based on the present findings, it is proposed that keeping deuterated peptides in the form of water-in-oil droplets during the post-labelling workflow will facilitate the preservation of deuterium labels on the peptide backbone and thereby enhance the reliability of the H/D exchange data.


Assuntos
Pepsina A , Água , Deutério/química , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Medição da Troca de Deutério/métodos , Peptídeos/química , Hidrogênio/química , Mioglobina/química , Cicloexanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...