Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.614
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520304

RESUMO

The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ±â€…18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.


Some grass species have a symbiotic relationship with an endophytic fungus that produces toxic ergot alkaloids which have detrimental impacts on herbivores. Ergot alkaloids have a significant impact on livestock production causing annual loss to the livestock industry that likely exceeds $1 billion. Effective treatment for this toxicosis is still needed. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. We found that 5-hydroxytryptophan administration has the potential to normalize both circulating serotonin and feed intake reduced by ergot alkaloid consumption.


Assuntos
Alcaloides de Claviceps , Serotonina , Bovinos , Animais , 5-Hidroxitriptofano , Ácido Hidroxi-Indolacético , Alcaloides de Claviceps/toxicidade , Ingestão de Alimentos , Ração Animal/análise
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502533

RESUMO

Consumption of ergot alkaloids from endophyte-infected tall fescue results in losses to the livestock industry in many countries and a means to mitigate these losses is needed. The objective of this study was to evaluate intra-abomasal infusion of the dopamine precursor, levodopa (L-DOPA), on dopamine metabolism, feed intake, and serum metabolites of steers exposed to ergot alkaloids. Twelve Holstein steers (344.9 ±â€…9.48 kg) fitted with ruminal cannula were housed with a cycle of heat challenge during the daytime (32 °C) and thermoneutral at night (25 °C). The steers received a basal diet of alfalfa cubes containing equal amounts of tall fescue seed composed of a mixture of endophyte-free (E-) or endophyte-infected tall fescue seeds (E+) equivalent to 15 µg ergovaline/kg body weight (BW) for 9 d followed by intra-abomasal infusion of water (L-DOPA-) or levodopa (L-DOPA+; 2 mg/kg BW) for an additional 9 d. Afterward, the steers were pair-fed for 5 d to conduct a glucose tolerance test. The E+ treatment decreased (P = 0.005) prolactin by approximately 50%. However, prolactin increased (P = 0.050) with L-DOPA+. Steers receiving E+ decreased (P < 0.001) dry matter intake (DMI); however, when supplemented with L-DOPA+ the decrease in DMI was less severe (L-DOPA × E, P = 0.003). Also, L-DOPA+ infusion increased eating duration (L-DOPA × E, P = 0.012) when steers were receiving E+. The number of meals, meal duration, and intake rate were not affected (P > 0.05) by E+ or L-DOPA+. The L-DOPA+ infusion increased (P < 0.05) free L-DOPA, free dopamine, total L-DOPA, and total dopamine. Conversely, free epinephrine and free norepinephrine decreased (P < 0.05) with L-DOPA+. Total epinephrine and total norepinephrine were not affected (P > 0.05) by L-DOPA+. Ergot alkaloids did not affect (P > 0.05) circulating free or total L-DOPA, dopamine, or epinephrine. However, free and total norepinephrine decreased (P = 0.046) with E+. Glucose clearance rates at 15 to 30 min after glucose infusion increased with L-DOPA+ (P < 0.001), but not with E+ (P = 0.280). Administration of L-DOPA as an agonist therapy to treat fescue toxicosis provided a moderate increase in DMI and eating time and increased plasma glucose clearance for cattle dosed with E+ seed.


Fescue has become the dominant cool-season perennial grass in the southeastern region of the United States and is also found in other countries. Endophytes from a plant­fungus symbiotic relationship produce toxic alkaloids that have caused significant annual economic losses to the livestock industry. Treatments to alleviate this toxicosis are still demanded. This study evaluates the infusion of the dopamine precursor, levodopa (L-DOPA), to mitigate the toxicosis caused by ergot alkaloids. When L-DOPA was infused, eating duration increased and the decrease in feed intake caused by ergot alkaloids was less severe. Additionally, circulating dopamine and glucose clearance increased with L-DOPA. These results suggest that L-DOPA has the potential to aid in the mitigation of the toxicosis caused by ergot alkaloids.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Bovinos , Animais , Alcaloides de Claviceps/toxicidade , Levodopa , Dopamina , Prolactina , Ingestão de Alimentos , Endófitos , Norepinefrina , Ração Animal/análise , Epinefrina , Glucose
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442241

RESUMO

This study evaluated the effect of feeding ergot contaminated grain continuously or intermittently through backgrounding (BG) and finishing (FN) in a mash or pelleted supplement on the growth performance, health and welfare parameters, and carcass characteristics of feedlot beef steers. Sixty black Angus steers (300 ±â€…29.4 kg BW) were used in a complete randomized 238-d study. Steers were stratified by weight and randomly assigned to four different diets (15 steers/treatment) and individually housed. Treatments included: (1) control [CON; no added ergot alkaloids (EA)], (2) continuous ergot mash (CEM; fed continuously at 2 mg total EA/kg of DM), (3) intermittent ergot mash (IEM; fed at 2 mg total EA/kg of DM, during the first week of each 21-d period and CON for the remaining 2 wk, this feeding pattern was repeated in each period), and (4) intermittent ergot pellet (IEP; fed at 2 mg of total EA/kg of DM as a pellet during the first week of each 21-d period and CON for the remaining 2 wk as described for IEM). Steers were fed barley based BG diets containing 40% concentrate:60% silage (DM basis) for 84 d (four 21-d periods), transitioned over 28 d (no ergot fed) to an FN diet (90% concentrate:10% silage DM basis) and fed for 126 d (six 21-d periods) before slaughter. In the BG phase, steer DMI (P < 0.01, 7.45 vs. 8.05 kg/d) and ADG (P < 0.01) were reduced for all EA diets compared to CON. The CEM fed steers had lower ADG (P < 0.01, 0.735 vs. 0.980 kg) and shrunk final BW (P < 0.01, 350 vs. 366 kg) than CON. CEM had lower gain:feed (P < 0.07, 0.130 vs. 0.142) than CON. In the FN phase, steer DMI (P < 0.01, 9.95 vs. 11.05 kg/d) and ADG (P = 0.04) were also decreased for all EA fed steers compared to CON. Total shrunk BW gain (P = 0.03, 202.5 vs. 225.2 kg), final BW (P = 0.03, 617.9 vs. 662.2 kg), and carcass weight (P = 0.06) decreased for all EA fed steers compared to CON. The percentage of AAA carcasses decreased for all EA fed steers (P < 0.01, 46.7 vs. 93.3%) compared to CON. EA fed steers had increased rectal temperatures (P < 0.01, 39.8 vs. 39.4 °C) compared to CON. Pelleting ergot contaminated grain did not reduce the impact of ergot alkaloids on any of the measured parameters during BG or FN. Continuously or intermittently feeding ergot contaminated diets (2 mg total EA/kg of DM) significantly reduced intake, growth performance, and carcass weight, with minimal impact on blood parameters in feedlot steers. Pelleting was not an effective method of reducing ergot toxicity.


Produced by the fungus Claviceps purpurea, ergot alkaloids (EA) are toxic to beef cattle when consumed and can lead to reduction in feed intake and growth performance, vasoconstriction of the blood vessels, hyperthermia, damage to extremities (ears, tails, and hooves) and in severe cases, death. Grain is often cleaned to meet quality standards, and the resulting screenings are often utilized for feeding livestock and can have high concentrations of EA. The application of heat during pelleting of EA contaminated grain has been suggested to reduce its toxicity. Backgrounding and finishing beef cattle feeding experiments were conducted to assess the effect of continuously or intermittently feeding EA contaminated grain (2 mg/kg of diet DM) either as a pellet or as mash on growth performance, health, and animal welfare. Feeding EA grain continuously or intermittently either as a mash or pellet drastically reduced growth performance of steers, with no difference between treatments.


Assuntos
Ração Animal , Alcaloides de Claviceps , Bovinos , Animais , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Silagem/análise , Grão Comestível
4.
Vet Clin North Am Equine Pract ; 40(1): 95-111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281896

RESUMO

"Fescue toxicosis" and reproductive ergotism present identical toxidromes in late-gestational mares and, likely, other equids. Both toxic syndromes are caused by ergopeptine alkaloids (EPAs) of fungal origin, and they are collectively referred to as equine ergopeptine alkaloid toxicosis (EEPAT). EPAs are produced by either a toxigenic endophyte (Epichloë coenophiala) in tall fescue and/or a nonendophytic fungus (Claviceps purpurea), infecting small grains and grasses. EEPAT can cause hypoprolactinemia-induced agalactia/dysgalactia, prolonged gestation, dystocia, and other reproductive abnormalities in mares, as well as failure of passive transfer in their frequently dysmature/overmature/postmature foals. Prevention relies on eliminating exposures and/or reversing hypoprolactinemia.


Assuntos
Alcaloides de Claviceps , Festuca , Doenças dos Cavalos , Animais , Cavalos , Feminino , Gravidez , Alcaloides de Claviceps/toxicidade , Endófitos , Doenças dos Cavalos/induzido quimicamente , Festuca/microbiologia , Poaceae
5.
Food Chem ; 441: 138363, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199100

RESUMO

The optimization screening methods for total ergot alkaloids in wheat extracts involve transforming them into a single compound, which is then analyzed via high-resolution Orbitrap mass spectrometry (Orbitrap MS). Orbitrap MS provides highly sensitive and accurate mass measurements, enhancing the selectivity and sensitivity of the analysis. Various hydrolysis and reduction methods have been investigated, and the use of superhydrides has emerged as the most effective method for transforming ergopeptine alkaloids. This study also focused on the epimerization of ergot alkaloids, particularly the differences between R- and S-epimers and their impact on the mass spectra. We validated our method by assessing the linearity, sensitivity, recovery, matrix effects, repeatability, and stability. The limits of detection and quantitation were set at 0.43 and 1.30 µg LSA/kg wheat, respectively. The proposed method offers a robust analytical approach for screening and quantifying total ergot alkaloids in wheat samples, addressing important concerns about their presence in food and feed.


Assuntos
Alcaloides de Claviceps , Alcaloides de Claviceps/análise , Alcaloides de Claviceps/química , Farinha/análise , Triticum/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Contaminação de Alimentos/análise
6.
Mycotoxin Res ; 40(1): 1-17, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953416

RESUMO

Ergot alkaloids are secondary metabolites that are produced by fungi and contaminate cereal crops and grasses. The ergot alkaloids produced by Claviceps purpurea are the most abundant worldwide. The metabolites exist in two configurations, the C-8-R-isomer (R-epimer) and the C-8-S-isomer (S-epimer). These two configurations can interconvert to one another. Ergot alkaloids cause toxic effects after consumption of ergot-contaminated food and feed at various concentrations. For bioactivity reasons, the C-8-R-isomers have been studied to a greater extent than the C-8-S-isomer since the C-8-S-isomers were considered biologically inactive. However, recent studies suggest the contrary. Analytical assessment of ergot alkaloids now includes the C-8-S-isomers and high concentrations of specific C-8-S-isomers have been identified. The inclusion of the C-8-S-isomer in regulatory standards is reviewed. This review has identified that further research into the C-8-S-isomers of ergot alkaloids is warranted. In addition, the inclusion of the C-8-S-isomers into regulatory recommendations worldwide for food and feed should be implemented. The objectives of this review are to provide an overview of historic and current studies that have assessed the C-8-S-isomers. Specifically, this review will compare the C-8-R-isomers to the C-8-S-isomers with an emphasis on the biological activity and analytical assessment.


Assuntos
Claviceps , Alcaloides de Claviceps , Compostos Heterocíclicos de 4 ou mais Anéis
7.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894711

RESUMO

Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, the presence of ergot alkaloids in food presents a concern for human safety. For this reason, it is essential to develop several analytical methods that allow the detection of these toxic compounds. This review compiles and discusses the most relevant studies and methods used in the detection and quantification of ergot alkaloids. Moreover, the decontamination techniques are also addressed, with special attention to sorting, cleaning, frying, baking, peeling, and ammonization methods, as they are the only ones already applied to ergot alkaloids.


Assuntos
Claviceps , Alcaloides de Claviceps , Micotoxinas , Humanos , Grão Comestível/química , Micotoxinas/análise , Compostos Heterocíclicos de 4 ou mais Anéis , Agonistas de Dopamina , Contaminação de Alimentos/análise
8.
J Agric Food Chem ; 71(42): 15821-15828, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843173

RESUMO

Ergot alkaloids (EAs), mycotoxins produced mainly by fungi of the Claviceps genus, have been frequently reported in rye, while their increasingly frequent occurrence in other cereals is likely related to weather conditions, with the incidence of ergot sclerotia in winter grains being related to heavy rainfall and moist soils at critical periods. However, compared to other regulated mycotoxins, data about the prevalence and occurrence of EAs in major and minor cereals harvested in the Mediterranean growing areas are still scant. In this regard, the current study reported the occurrence of EAs in 18 genotypes of winter cereals harvested over 3 years from an experimental field located in North Italy which were analyzed by HPLC-MS/MS. Results indicate a widespread occurrence of all the major EAs in all the considered cereal crops, especially under supportive meteorological conditions. EA contamination was dependent on the harvest year (p < 0.0001) which was particularly high in 2020 for all the considered species. The results also demonstrated a large co-occurrence of EAs with 98 cereal samples out of 162 contaminated with at least one of the 12 EAs (60% positive samples) in the range LOD: 15,389 µg/kg (median value: 2.32 µg/kg), expressed as the sum of the EAs. Rye was confirmed to be the crop more susceptible to the fungal infection (EAs content up to 4,302 µg/kg). To the best of our knowledge, we have reported the accumulation of EAs in tritordeum (LOD: 15,389 µg/kg) and in emmer (LOD: 1.9 µg/kg) for the first time.


Assuntos
Alcaloides de Claviceps , Micotoxinas , Alcaloides de Claviceps/análise , Grão Comestível/química , Espectrometria de Massas em Tandem/métodos , Micotoxinas/análise , Itália , Contaminação de Alimentos/análise
9.
Toxins (Basel) ; 15(8)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37624254

RESUMO

Ergot sclerotia produce toxic secondary metabolites, ergot alkaloids, that infect cereal crops and grasses. Ergot alkaloids have two isomeric configurations: the C-8-R-isomer (R-epimer), and the C-8-S-isomer (S-epimer). Ergot contaminated matrices, such as cereal grains or grasses, may be stored for extended periods at various temperatures before being analyzed, utilized, or consumed. This study assessed the concentration of six common ergot alkaloids in both configurations found in naturally contaminated wheat over time (one, two, and four months) at different temperatures (room temperature, +4 °C, and -20 °C) using ultra-high-performance liquid chromatography-tandem mass spectrometry. The data indicate that the total ergot concentration within a natural contaminated sample varies over time at room temperature, +4 °C, and -20 °C. The total ergot concentration increased until month two, and decreased at month four, independent of temperature (p < 0.05). The total R-epimer concentration appeared to be less stable over time than the total S-epimer concentration. The changes in the total R and total S-epimer concentrations may have been caused by changes in the ergocristine and ergocristinine concentrations, respectively. Time and temperature should be considered when storing potentially contaminated matrices in a laboratory or practical agriculture situations. Quantification of ergot contaminated matrices should occur prior to their use to ensure the most reliable estimates of the concentration of ergot.


Assuntos
Alcaloides de Claviceps , Temperatura , Agricultura , Cromatografia Líquida de Alta Pressão , Produtos Agrícolas , Grão Comestível , Poaceae
10.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37638650

RESUMO

This study was designed to evaluate the effects of feeding increasing dietary concentrations of ergot alkaloids from cereal grains (EA; 0, 0.75, 1.5, 3.0 mg/kg of dietary DM) to feedlot cattle over backgrounding (BG) and finishing (FS) phases on health, welfare, and growth performance. Two hundred and forty commercial steers (280 ±â€…32 kg BW) were stratified by weight and randomly allocated to 16 pens (15 steers/pen), 4 of which were equipped with the GrowSafe system (1 pen/treatment) to measure individual feed intake. Each pen was randomly assigned to a treatment (n = 4/treatment). Treatments included 1) control (CTRL), no added EA; 2) CTRL + 0.75 mg/kg EA (EA075); 3) CTRL + 1.5 mg/kg EA (EA150); and 4) CTRL + 3.0 mg/kg EA (EA300). Steers were fed barley-based BG diets containing 40% concentrate: 60% silage (DM basis) for 84 d. Steers were then transitioned over 28 d to an FS diet (90% concentrate: 10% silage DM basis) and fed for 119 d before slaughter. The diet fed to EA300 steers was replaced with the CTRL diet after 190 d on feed (DOF), due to EA-induced hyperthermia starting at 165 DOF. In the BG phase, average meal length (P = 0.01) and size (P = 0.02), daily feeding duration (P = 0.03), final body weight (BW; P = 0.03), and total BW gain (P = 0.02) linearly decreased with increasing EA levels, while gain to feed (G:F) responded quadratically (P = 0.04), with EA150 having the poorest value. Increasing concentrations of EA in the diet linearly increased rectal temperature (P < 0.01) throughout the trial. Over the full FS phase, a quadratic response was observed for ADG (P = 0.05), final BW (P = 0.05), total BW gain (P = 0.02), and carcass weight (P = 0.05) with steers fed EA150 having the lowest performance, as EA300 steers were transferred to CTRL diet after 190 DOF. Dressing percentage (P = 0.02) also responded quadratically, with the lowest values observed for EA300. Thus, EA reduced ADG during BG and FS phases, although more prominently in FS, likely due to increased ambient temperatures and high-energy diet in FS triggering hyperthermia. When EA300 steers were transferred to the CTRL diet, compensatory gain promoted higher hot carcass weight (HCW) when compared with steers fed EA150. In conclusion, feeding feedlot steers diets with > 0.75 mg/kg EA caused reductions in performance and welfare concerns, although this breakpoint may be affected by duration of feeding, environmental temperatures, and EA profiles in the feed.


Ergot alkaloids (EA) are produced by a parasitic fungus (Claviceps purpurea) during the cereal grain growth cycle. Feeding cereal grain containing EA to beef cattle can cause constriction of blood vessels, hyperthermia, gangrene of extremities (ears, hoof, and tail), reduced feed intake and growth, and even death. Feed cleaning and processing technologies have been developed to remove EA from the human food chain, thus diverting contaminated feed for livestock use. We performed a beef cattle feedlot experiment to evaluate the impact of increasing levels of EA (0, 0.75, 1.50, 3.00 mg/kg of diet DM) on performance, health, and welfare. Steers fed 3.0 mg/kg of EA were transferred to the control diet (without EA) in the last half of finishing due to toxicity (hyperthermia). As EA levels increased, growth rate throughout the backgrounding and finishing phases decreased, while rectal temperatures increased and altered feeding behaviors occurred. Steers removed from 3 mg/kg EA diet exhibited compensatory gain, but their respiratory rate remained elevated 50 d after EA were last consumed.


Assuntos
Alcaloides de Claviceps , Ocitócicos , Bovinos , Animais , Dieta/veterinária , Ingestão de Alimentos , Grão Comestível , Refeições
11.
BMC Complement Med Ther ; 23(1): 288, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587459

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has been well defined as a common chronic liver metabolism disorder. Statins as a first-line therapeutic treatment had some side effects. Here, we found that Fumigaclavine C (FC) was collected from endophytic Aspergillus terreus via the root of Rhizophora stylosa (Rhizophoraceae), had potential anti-adipogenic and hepatoprotective effects both in vitro and in vivo without obvious adverse side effects. However, the mechanisms of the prevention and management of FC for hepatic steatosis are incompletely delineated. METHODS: The pharmacodynamic effects of FC were measured in high-fat diet (HFD)-induced obese mice. Liver index and blood biochemical were examined. Histopathological examination in the liver was performed by hematoxylin & eosin or oil red O. The levels of serum TG, TC, LDL-c, HDL-c, FFA, T-bili, ALT, AST, creatinine, and creatine kinase were estimated via diagnostic assay kits. The levels of hepatic lipid metabolism-related genes were detected via qRT-PCR. The expression levels of hepatic de novo lipogenesis were quantitated with Western blot analysis.  RESULTS: FC-treatment markedly reduced hepatic lipid accumulation in HFD-induced obese mice. FC significantly attenuated the hepatic lipid metabolism and ameliorated liver injury without obvious adverse side effects. Moreover, FC also could dose-dependently modulate the expressions of lipid metabolism-related transcription genes. Mechanically, FC notably suppressed sterol response element binding protein-1c mediated de novo lipogenesis via interfering with the RhoA/ROCK signaling pathway by decreasing the levels of geranylgeranyl diphosphate and farnesyl diphosphate. CONCLUSIONS: These findings suggested that FC could improve hepatic steatosis through inhibiting de novo lipogenesis via modulating the RhoA/ROCK signaling pathway.


Assuntos
Alcaloides de Claviceps , Alcaloides Indólicos , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Lipogênese , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transdução de Sinais , Alcaloides de Claviceps/farmacologia , Alcaloides Indólicos/farmacologia
12.
Appl Environ Microbiol ; 89(8): e0079323, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37432119

RESUMO

Ergot alkaloids are fungal specialized metabolites that are important in agriculture and serve as sources of several pharmaceuticals. Aspergillus leporis is a soil saprotroph that possesses two ergot alkaloid biosynthetic gene clusters encoding lysergic acid amide production. We identified two additional, partial biosynthetic gene clusters within the A. leporis genome containing some of the ergot alkaloid synthesis (eas) genes required to make two groups of clavine ergot alkaloids, fumigaclavines and rugulovasines. Clavines possess unique biological properties compared to lysergic acid derivatives. Bioinformatic analyses indicated the fumigaclavine cluster contained functional copies of easA, easG, easD, easM, and easN. Genes resembling easQ and easH, which are required for rugulovasine production, were identified in a separate gene cluster. The pathways encoded by these partial, or satellite, clusters would require intermediates from the previously described lysergic acid amide pathway to synthesize a product. Chemical analyses of A. leporis cultures revealed the presence of fumigaclavine A. However, rugulovasine was only detected in a single sample, prompting a heterologous expression approach to confirm functionality of easQ and easH. An easA knockout strain of Metarhizium brunneum, which accumulates the rugulovasine precursor chanoclavine-I aldehyde, was chosen as expression host. Strains of M. brunneum expressing easQ and easH from A. leporis accumulated rugulovasine as demonstrated through mass spectrometry analysis. These data indicate that A. leporis is exceptional among fungi in having the capacity to synthesize products from three branches of the ergot alkaloid pathway and for utilizing an unusual satellite cluster approach to achieve that outcome. IMPORTANCE Ergot alkaloids are chemicals produced by several species of fungi and are notable for their impacts on agriculture and medicine. The ability to make ergot alkaloids is typically encoded by a clustered set of genes that are physically adjacent on a chromosome. Different ergot alkaloid classes are formed via branching of a complex pathway that begins with a core set of the same five genes. Most ergot alkaloid-producing fungi have a single cluster of genes that is complete, or self-sufficient, and produce ergot alkaloids from one or occasionally two branches from that single cluster. Our data show that Aspergillus leporis is exceptional in having the genetic capacity to make products from three pathway branches. Moreover, it uses a satellite cluster approach, in which gene products of partial clusters rely on supplementation with a chemical intermediate produced via another gene cluster, to diversify its biosynthetic potential without duplicating all the steps.


Assuntos
Alcaloides de Claviceps , Cromatografia Gasosa-Espectrometria de Massas , Alcaloides de Claviceps/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Família Multigênica
13.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175111

RESUMO

Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food.


Assuntos
Alcaloides de Claviceps , Ácido Lisérgico , Espectrometria de Massas em Tandem , Ergolinas , Farinha/análise
14.
Appl Environ Microbiol ; 89(6): e0041523, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212708

RESUMO

Opportunistically pathogenic fungi have varying potential to cause disease in animals. Factors contributing to their virulence include specialized metabolites, which in some cases evolved in contexts unrelated to pathogenesis. Specialized metabolites that increase fungal virulence in the model insect Galleria mellonella include the ergot alkaloids fumigaclavine C in Aspergillus fumigatus (syn. Neosartorya fumigata) and lysergic acid α-hydroxyethylamide (LAH) in the entomopathogen Metarhizium brunneum. Three species of Aspergillus recently found to accumulate high concentrations of LAH were investigated for their pathogenic potential in G. mellonella. Aspergillus leporis was most virulent, A. hancockii was intermediate, and A. homomorphus had very little pathogenic potential. Aspergillus leporis and A. hancockii emerged from and sporulated on dead insects, thus completing their asexual life cycles. Inoculation by injection resulted in more lethal infections than did topical inoculation, indicating that A. leporis and A. hancockii were preadapted for insect pathogenesis but lacked an effective means to breach the insect's cuticle. All three species accumulated LAH in infected insects, with A. leporis accumulating the most. Concentrations of LAH in A. leporis were similar to those observed in the entomopathogen M. brunneum. LAH was eliminated from A. leporis through a CRISPR/Cas9-based gene knockout, and the resulting strain had reduced virulence to G. mellonella. The data indicate that A. leporis and A. hancockii have considerable pathogenic potential and that LAH increases the virulence of A. leporis. IMPORTANCE Certain environmental fungi infect animals occasionally or conditionally, whereas others do not. Factors that affect the virulence of these opportunistically pathogenic fungi may have originally evolved to fill some other role for the fungus in its primary environmental niche. Among the factors that may improve the virulence of opportunistic fungi are specialized metabolites--chemicals that are not essential for basic life functions but provide producers with an advantage in particular environments or under specific conditions. Ergot alkaloids are a large family of fungal specialized metabolites that contaminate crops in agriculture and serve as the foundations of numerous pharmaceuticals. Our results show that two ergot alkaloid-producing fungi that were not previously known to be opportunistic pathogens can infect a model insect and that, in at least one of the species, an ergot alkaloid increases the virulence of the fungus.


Assuntos
Alcaloides de Claviceps , Animais , Alcaloides de Claviceps/metabolismo , Aspergillus/metabolismo , Aspergillus fumigatus/genética , Fungos/metabolismo , Insetos
15.
Toxins (Basel) ; 15(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37235377

RESUMO

Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E-) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E- and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Animais , Endófitos , Alcaloides de Claviceps/toxicidade , Comportamento Animal , Ração Animal/toxicidade , Ração Animal/análise
16.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37004204

RESUMO

Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 µM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 µM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 µM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 µM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 µM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 µM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 µM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.


Consumption of ergot alkaloids found in endophyte-infected tall fescue can lead to symptoms of fescue toxicosis, such as vasoconstriction, in ruminant livestock species. Ergovaline is one of the primary ergot alkaloids responsible for causing vasoconstriction when toxic varieties of fescue are consumed. It has been previously shown that ergovaline causes vasoconstriction by interacting with vascular serotonin receptors in cattle and sheep. Depending on when ergovaline exposure occurs, ergovaline can function as an agonist (stimulant) or antagonist (inhibitor) of vascular activity. However, it is unclear how the duration of ergovaline exposure affects vasoconstriction caused by serotonin. Experiments were conducted using the bovine mesenteric artery and mesenteric vein that were exposed to either 0, 0.01, or 0.1 µM ergovaline for 24-h prior to serotonin additions or simultaneously with serotonin additions. Maximum contractile response data were recorded using a multimyograph system and normalized as a percentage of the contractile response produced by the reference compound, KCl. The results of these experiments demonstrated that the duration of ergovaline exposure influences serotonin-mediated vasoconstriction and possibly vasorelaxation in bovine mesenteric vasculature. If ergovaline and serotonin exposure occur simultaneously, ergovaline can act as an agonist or antagonist of serotonin-mediated vasoconstriction. If serotonin exposure occurs after prior ergovaline exposure, serotonin can induce vasorelaxation of blood vessels. Understanding how complex interactions between ergovaline and serotonin occur and affect vascular function will aid in the development of strategies to mitigate sustained vasoconstriction caused during fescue toxicosis.


Assuntos
Alcaloides de Claviceps , Serotonina , Bovinos , Animais , Serotonina/farmacologia , Alcaloides de Claviceps/toxicidade , Ergotaminas/toxicidade , Receptores de Serotonina , Ração Animal/análise
17.
ACS Synth Biol ; 12(4): 1133-1145, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987837

RESUMO

Agroclavine, which has anti-depressant activity and anti-Alzheimer effects, is the raw material used to synthesize ergo-based drugs. Although the production of agroclavine from Saccharomyces cerevisiae is possible, its yield is exceptionally low. The current study proposes a modular compartmentalization strategy for identifying and modifying the bottleneck step in agroclavine overproduction. The agroclavine synthetic pathway was reconstituted in yeast, and the best combination of Claviceps fusiformis EasA with Claviceps purpurea EasD/EasG was identified. According to the data on the expression and subcellular localization of agroclavine pathway proteins, the whole pathway was divided into two modules by chanoclavine-I. Separate enzyme distribution within the downstream module and low expression of DmaW and EasE in the upstream module were identified as the bottleneck steps in the pathway. The pathway efficiency was enhanced 2.06-fold when the downstream module was entirely anchored to the endoplasmic reticulum compartment. Increasing NADPH supply by overexpressing POS5 further improved the agroclavine yield by 27.4%. Altering the intracellular localization of DmaW from the peroxisome to the endoplasmic reticulum (ER) not only improved protein expression but also accelerated the accumulation of agroclavine by 59.9%. Integration of all modified modules into the host chromosome resulted in an improved yield of agroclavine at 101.6 mg/L with flask fermentation (a 241-fold improvement over the initial strain) and ultimately produced 152.8 mg/L of agroclavine on fed-batch fermentation. The current study unlocked the potential of S. cerevisiae in the advanced biosynthesis of ergot alkaloids. It also provides a promising strategy to reconstitute compartmentalized pathways.


Assuntos
Alcaloides de Claviceps , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alcaloides de Claviceps/genética , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae/genética
18.
J Food Prot ; 86(3): 100046, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916553

RESUMO

Claviceps purpurea (Fr.) Tul is the causal organism for ergot impacting grass hosts, including wheat. The pathogen produces ergot alkaloids (EAs) during the development of mature sclerotia leading to potential wheat quality discounts or rejection at the point of sale. Cultural practices are recommended for the management of ergot in wheat, but there is limited information pertaining to the use of in-season fungicides to help reduce ergot. The objective of this research was to evaluate the efficacy of four fungicides (prothioconazole + metconazole, pydiflumetofen + propiconazole, azoxystrobin + propiconazole, and fluxapyroxad + pyraclostrobin) on sclerotia characteristics, and EAs associated with C. purpurea. A field experiment was established using a male-sterile hard red spring line with fungicide applications occurring at complete full head emergence (Feekes Growth Stage 10.5). Individual plots were harvested and cleaned, and ergot sclerotia were collected. Physical characteristics and toxin production were examined. Fungicides had a significant (p < .05) impact on total ergot body weight (EBW), with all fungicides having lower EBW than the nontreated control. The fungicide premixture of pydiflumetofen + propiconazole had the lowest EBW among all treatments. Fluxapyroxad + pyraclostrobin had the lowest levels of EAs among fungicides. Results suggest that fungicide premixtures can potentially reduce EBW and influence EA production in wheat.


Assuntos
Claviceps , Alcaloides de Claviceps , Fungicidas Industriais , Triticum , Fungicidas Industriais/farmacologia , Alcaloides de Claviceps/farmacologia
19.
Mycotoxin Res ; 39(2): 81-93, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930431

RESUMO

This review updates the current status of activities related to hazard characterisation for mycotoxins, with special reference to regulatory work accomplished within the European Union. Because the relevant information on these topics is widely scattered in the scientific literature, this review intends to provide a condensed overview on the most pertinent aspects. Human health risk assessment is a procedure to estimate the nature and potential for harmful effects of mycotoxins on human health due to exposure to them via contaminated food. This assessment involves hazard identification, hazard characterisation, exposure assessment, and risk characterisation. Mycotoxins covered in this review are aflatoxins, ochratoxin A, cyclopiazonic acid, citrinin, trichothecenes (deoxynivalenol, nivalenol, T-2, and HT-2 toxins), fumonisins, zearalenone, patulin, and ergot alkaloids. For mycotoxins with clear genotoxic/carcinogenic properties, the focus is on the margin of exposure approach. One of its goals is to document predictive characterisation of the human hazard, based on studies in animals using conditions of low exposure. For the other, non-genotoxic toxins, individual 'no adverse effect levels' have been established, but structural analogues or modified forms may still complicate assessment. During the process of hazard characterisation, each identified effect is assessed for human relevance. The estimation of a 'safe dose' is the hazard characterisation endpoint. The final aim of all of these activities is to establish a system, which is able to minimise and control the risk for the consumer from mycotoxins in food. Ongoing research on mycotoxins constantly comes up with new findings, which may have to be implemented into this system.


Assuntos
Aflatoxinas , Alcaloides de Claviceps , Fumonisinas , Micotoxinas , Patulina , Zearalenona , Animais , Humanos , Micotoxinas/análise , Aflatoxinas/análise , Patulina/análise , Fumonisinas/análise , Zearalenona/análise , Contaminação de Alimentos/análise
20.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...