Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.617
Filtrar
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557723

RESUMO

CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαß+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αß T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos T CD8-Positivos , Ativação Linfocitária , Antígenos HLA , Isoformas de Proteínas/metabolismo
2.
HLA ; 103(1): e15222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38589051

RESUMO

Assessing donor/recipient HLA compatibility at the eplet level requires second field DNA typings but these are not always available. These can be estimated from lower-resolution data either manually or with computational tools currently relying, at best, on data containing typing ambiguities. We gathered NGS typing data from 61,393 individuals in 17 French laboratories, for loci A, B, and C (100% of typings), DRB1 and DQB1 (95.5%), DQA1 (39.6%), DRB3/4/5, DPB1, and DPA1 (10.5%). We developed HaploSFHI, a modified iterative maximum likelihood algorithm, to impute second field HLA typings from low- or intermediate-resolution ones. Compared with the reference tools HaploStats, HLA-EMMA, and HLA-Upgrade, HaploSFHI provided more accurate predictions across all loci on two French test sets and four European-independent test sets. Only HaploSFHI could impute DQA1, and solely HaploSFHI and HaploStats provided DRB3/4/5 imputations. The improved performance of HaploSFHI was due to our local and nonambiguous data. We provided explanations for the most common imputation errors and pinpointed the variability of a low number of low-resolution haplotypes. We thus provided guidance to select individuals for whom sequencing would optimize incompatibility assessment and cost-effectiveness of HLA typing, considering not only well-imputed second field typing(s) but also well-imputed eplets.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doadores de Tecidos , Humanos , Alelos , Haplótipos , Teste de Histocompatibilidade , Antígenos HLA/genética , Frequência do Gene
3.
Front Immunol ; 15: 1349030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590523

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Assuntos
Doença de Parkinson , Retroelementos , Humanos , Retroelementos/genética , Doença de Parkinson/genética , Dopamina , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Genótipo
4.
Front Immunol ; 15: 1342335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596688

RESUMO

Introduction: Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic ß cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods: Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results: T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion: Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade/metabolismo
5.
HLA ; 103(4): e15458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597238

RESUMO

We report data on six kidney or heart recipients who were administered daratumumab to treat or prevent antibody-mediated rejection (ABMR). To date, data are scarce concerning the use of daratumumab in solid organ transplantation and most reports show a decrease in donor-specific antigen (DSA) levels and an improvement in ABMR using a multiple myeloma daratumumab administration scheme, that is, with sequential systematic administration. Here, we report on the efficacy of daratumumab 1/ in reducing the histological signs of ABMR, 2/ in reducing the ability of DSA to bind to donor cells in vitro through negativation of flow cytometry crossmatching, 3/ in preferentially being directed towards antibodies sharing epitopes, suggesting that daratumumab may specifically target activated plasma cells, 4/ and when administered as a single dose. This last point suggests, for the first time, that, as for rituximab in auto-immune diseases, the scheme for daratumumab administration could be different for targeting DSA-producing plasma cells than for tumour cells.


Assuntos
Anticorpos Monoclonais , Transplante de Rim , Humanos , Alelos , Anticorpos Monoclonais/uso terapêutico , Rim , Rejeição de Enxerto , Isoanticorpos , Transplantados , Antígenos HLA
6.
Am J Case Rep ; 25: e943801, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632857

RESUMO

BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for severe aplastic anemia (SAA). It is known that SAA can evolve into malignant clonal diseases, such as acute myeloblastic leukemia (AML) or myelodysplastic syndrome. However, the transformation of SAA into AML after allo-HSCT is a rare phenomenon. Here, we report a case of SAA transformed into AML after patient received human leucocyte antigen (HLA)-matched sibling peripheral blood stem cell transplantation. CASE REPORT A 51-year-old female patient presented with petechiae and fatigue and received a diagnosis of idiopathic SAA. The immunosuppressive therapy combined with umbilical cord blood transplantation failed for this patient. Then, she received HLA-matched sibling allogeneic peripheral blood stem cell transplantation (allo-PBSCT). However, 445 days after allo-PBSCT, the patient had a diagnosis of AML by bone marrow puncture. Donor-recipient chimerism monitoring and cytogenetic analysis confirmed that the leukemia was donor cell origin. Notably, a new HOXA11 mutation was detected in the peripheral blood of the patient after transplantation by whole-exome sequencing, which was the same gene mutation detected in the donor. The patient received 1 cycle of induction chemotherapy with azacytidine and achieved complete remission. However, the leukemia relapsed after 2 cycles of consolidation chemotherapy. Unfortunately, the patient died of leukemia progression 575 days after allo-HSCT. CONCLUSIONS The mechanism of how normal donor hematopoietic cells transform to leukemia in the host remains unclear. Donor cell leukemia provides a unique opportunity to examine genetic variations in donors and hosts with regards to the progression to malignancy.


Assuntos
Anemia Aplástica , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Feminino , Humanos , Pessoa de Meia-Idade , Anemia Aplástica/terapia , Doadores de Tecidos , Leucemia Mieloide Aguda/terapia , Antígenos HLA
7.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631707

RESUMO

BACKGROUND: The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides. METHODS: HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses. RESULTS: We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele. CONCLUSION: The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.


Assuntos
Adenocarcinoma , Peptídeos , Humanos , Peptídeos/metabolismo , Linfócitos T , Antígenos HLA , Antígenos de Neoplasias , Desequilíbrio Alélico , Adenocarcinoma/metabolismo , Células Germinativas/metabolismo
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38600667

RESUMO

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding motifs. Based on the discovery, we make the preprocessing and coding closer to the natural biological process. Besides, due to the input being based on multiple types of features and the attention module focused on the BiGRU hidden layer, TripHLApan has learned more sequence level binding information. The application of transfer learning strategies ensures the accuracy of prediction results under special lengths (peptides in length 8) and model scalability with the data explosion. Compared with the current optimal models, TripHLApan exhibits strong predictive performance in various prediction environments with different positive and negative sample ratios. In addition, we validate the superiority and scalability of TripHLApan's predictive performance using additional latest data sets, ablation experiments and binding reconstitution ability in the samples of a melanoma patient. The results show that TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines. TripHLApan is publicly available at https://github.com/CSUBioGroup/TripHLApan.git.


Assuntos
Vacinas Anticâncer , Humanos , Ligação Proteica , Peptídeos/química , Antígenos HLA/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/química , Aprendizado de Máquina
9.
HLA ; 103(4): e15490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634568

RESUMO

The presence of multiple donor-specific antibodies (DSAs) targeting HLA antigens poses a challenge to transplantation. Various techniques, including the use of recombinant cell lines and crossmatch cells have been developed to isolate DSAs. To simplify the extraction of HLA-specific DSAs from complex sera, we introduced magnetic beads with single HLA specificity (MagSort). Sera were treated with MagSort, allowing HLA-specific antibodies to bind to the beads, and these specific antibodies were subsequently eluted. MagSort beads, coated with 59 different HLA variants, underwent testing through 1329 adsorption/elution processes, demonstrating their effectiveness and specificity in adsorbing and eluting HLA-specific antibodies. The MagSort method proves comparable to the cell method, showing similar isolated antibody binding patterns. The isolated antibody binding patterns from MagSort reveal both known eplets and unknown patterns, suggesting its utility for eplet discovery. Additionally, MagSort proved effective in extracting signals for flow cytometry cross-matching, offering a means to assess the binding capability of isolated antibodies against specific donor cells.


Assuntos
Anticorpos , Antígenos HLA , Humanos , Alelos , Teste de Histocompatibilidade/métodos , Fenômenos Magnéticos , Isoanticorpos , Rejeição de Enxerto
10.
Front Immunol ; 15: 1329032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571959

RESUMO

The commonly used antibodies 3D12 and 4D12 recognise the human leukocyte antigen E (HLA-E) protein. These antibodies bind distinct epitopes on HLA-E and differ in their ability to bind alleles of the major histocompatibility complex E (MHC-E) proteins of rhesus and cynomolgus macaques. We confirmed that neither antibody cross-reacts with classical HLA alleles, and used hybrids of different MHC-E alleles to map the regions that are critical for their binding. 3D12 recognises a region on the alpha 3 domain, with its specificity for HLA-E resulting from the amino acids present at three key positions (219, 223 and 224) that are unique to HLA-E, while 4D12 binds to the start of the alpha 2 domain, adjacent to the C terminus of the presented peptide. 3D12 staining is increased by incubation of cells at 27°C, and by addition of the canonical signal sequence peptide presented by HLA-E peptide (VL9, VMAPRTLVL). This suggests that 3D12 may bind peptide-free forms of HLA-E, which would be expected to accumulate at the cell surface when cells are incubated at lower temperatures, as well as HLA-E with peptide. Therefore, additional studies are required to determine exactly what forms of HLA-E can be recognised by 3D12. In contrast, while staining with 4D12 was also increased when cells were incubated at 27°C, it was decreased when the VL9 peptide was added. We conclude that 4D12 preferentially binds to peptide-free HLA-E, and, although not suitable for measuring the total cell surface levels of MHC-E, may putatively identify peptide-receptive forms.


Assuntos
60617 , Antígenos de Histocompatibilidade Classe I , Humanos , Epitopos , Antígenos HLA , Peptídeos , Antígenos de Histocompatibilidade Classe II , Anticorpos Monoclonais
11.
PLoS One ; 19(4): e0301175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574067

RESUMO

BACKGROUND: Canonical α/ß T-cell receptors (TCRs) bind to human leukocyte antigen (HLA) displaying antigenic peptides to elicit T cell-mediated cytotoxicity. TCR-engineered T-cell immunotherapies targeting cancer-specific peptide-HLA complexes (pHLA) are generating exciting clinical responses, but owing to HLA restriction they are only able to target a subset of antigen-positive patients. More recently, evidence has been published indicating that naturally occurring α/ß TCRs can target cell surface proteins other than pHLA, which would address the challenges of HLA restriction. In this proof-of-concept study, we sought to identify and engineer so-called HLA-independent TCRs (HiTs) against the tumor-associated antigen mesothelin. METHODS: Using phage display, we identified a HiT that bound well to mesothelin, which when expressed in primary T cells, caused activation and cytotoxicity. We subsequently engineered this HiT to modulate the T-cell response to varying levels of mesothelin on the cell surface. RESULTS: The isolated HiT shows cytotoxic activity and demonstrates killing of both mesothelin-expressing cell lines and patient-derived xenograft models. Additionally, we demonstrated that HiT-transduced T cells do not require CD4 or CD8 co-receptors and, unlike a TCR fusion construct, are not inhibited by soluble mesothelin. Finally, we showed that HiT-transduced T cells are highly efficacious in vivo, completely eradicating xenografted human solid tumors. CONCLUSION: HiTs can be isolated from fully human TCR-displaying phage libraries against cell surface-expressed antigens. HiTs are able to fully activate primary T cells both in vivo and in vitro. HiTs may enable the efficacy seen with pHLA-targeting TCRs in solid tumors to be translated to cell surface antigens.


Assuntos
Mesotelina , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade/metabolismo
12.
Sci Rep ; 14(1): 7966, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575727

RESUMO

The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.


Assuntos
COVID-19 , Linfócitos T , Humanos , Austrália , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Variação Genética , COVID-19/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade , Alelos
13.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540337

RESUMO

Pustular skin diseases, with pustular psoriasis (PP) being the prototype, are immune-mediated diseases characterized by the presence of multiple pustules, resulting from neutrophil accumulation in the layer of epidermis. Sterile skin pustular eruption, like PP, is also observed in 20-30% of patients with adult-onset immunodeficiency syndrome (AOID) and anti-interferon γ autoantibodies (IFN-γ), leading to challenges in classification and diagnosis. While the mechanism underlying this similar phenotype remains unknown, genetic factors in relation to the immune system are suspected of playing an important role. Here, the association between human leukocyte antigen (HLA) genes, which play essential roles in antigen presentation, contributing to immune response, and the presence of skin pustules in AOID and PP was revealed. HLA genotyping of 41 patients from multiple centers in Thailand who presented with multiple sterile skin pustules (17 AOID patients and 24 PP patients) was conducted using a next-generation-sequencing-based approach. In comparison to healthy controls, HLA-B*13:01 (OR = 3.825, 95%CI: 2.08-7.035), C*03:04 (OR = 3.665, 95%CI: 2.102-6.39), and DQB1*05:02 (OR = 2.134, 95%CI: 1.326-3.434) were significantly associated with the group of aforementioned conditions having sterile cutaneous pustules, suggesting a common genetic-related mechanism. We found that DPB1*05:01 (OR = 3.851, p = 0.008) and DRB1*15:02 (OR = 3.195, p = 0.033) have a significant association with pustular reaction in AOID patients, with PP patients used as a control. A variant in the DRB1 gene, rs17885482 (OR = 9.073, p = 0.005), was observed to be a risk factor for PP when using AOID patients who had pustular reactions as a control group. DPB1*05:01 and DRB1*15:02 alleles, as well as the rs17885482 variant in the DRB1 gene, were proposed as novel biomarkers to differentiate PP and AOID patients who first present with multiple sterile skin pustules without known documented underlying conditions.


Assuntos
Psoríase , Dermatopatias Vesiculobolhosas , Adulto , Humanos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA/genética , Psoríase/diagnóstico , Psoríase/genética , Autoanticorpos
14.
Methods Mol Biol ; 2758: 425-443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549028

RESUMO

Human leukocyte antigen (HLA) proteins are a group of glycoproteins that are expressed at the cell surface, where they present peptides to T cells through physical interactions with T-cell receptors (TCRs). Hence, characterizing the set of peptides presented by HLA proteins, referred to hereafter as the immunopeptidome, is fundamental for neoantigen identification, immunotherapy, and vaccine development. As a result, different methods have been used over the years to identify peptides presented by HLA proteins, including competition assays, peptide microarrays, and yeast display systems. Nonetheless, over the last decade, mass spectrometry-based immunopeptidomics (MS-immunopeptidomics) has emerged as the gold-standard method for identifying peptides presented by HLA proteins. MS-immunopeptidomics enables the direct identification of the immunopeptidome in different tissues and cell types in different physiological and pathological states, for example, solid tumors or virally infected cells. Despite its advantages, it is still an experimentally and computationally challenging technique with different aspects that need to be considered before planning an MS-immunopeptidomics experiment, while conducting the experiment and with analyzing and interpreting the results. Hence, we aim in this chapter to provide an overview of this method and discuss different practical considerations at different stages starting from sample collection until data analysis. These points should aid different groups aiming at utilizing MS-immunopeptidomics, as well as, identifying future research directions to improve the method.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Peptídeos/química , Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Espectrometria de Massas/métodos
15.
Methods Mol Biol ; 2758: 457-483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549030

RESUMO

Liquid chromatography-coupled mass spectrometry (LC-MS/MS) is the primary method to obtain direct evidence for the presentation of disease- or patient-specific human leukocyte antigen (HLA). However, compared to the analysis of tryptic peptides in proteomics, the analysis of HLA peptides still poses computational and statistical challenges. Recently, fragment ion intensity-based matching scores assessing the similarity between predicted and observed spectra were shown to substantially increase the number of confidently identified peptides, particularly in use cases where non-tryptic peptides are analyzed. In this chapter, we describe in detail three procedures on how to benefit from state-of-the-art deep learning models to analyze and validate single spectra, single measurements, and multiple measurements in mass spectrometry-based immunopeptidomics. For this, we explain how to use the Universal Spectrum Explorer (USE), online Oktoberfest, and offline Oktoberfest. For intensity-based scoring, Oktoberfest uses fragment ion intensity and retention time predictions from the deep learning framework Prosit, a deep neural network trained on a very large number of synthetic peptides and tandem mass spectra generated within the ProteomeTools project. The examples shown highlight how deep learning-assisted analysis can increase the number of identified HLA peptides, facilitate the discovery of confidently identified neo-epitopes, or provide assistance in the assessment of the presence of cryptic peptides, such as spliced peptides.


Assuntos
Aprendizado Profundo , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Antígenos de Histocompatibilidade Classe I , Antígenos HLA
16.
Anticancer Res ; 44(4): 1603-1610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537969

RESUMO

BACKGROUND/AIM: The immune microenvironment in cancer correlates with cancer progression and patient prognosis. Cancer immune microenvironment evaluation, based on CD3+ and CD8+ T cell infiltration at the center and invasive margin of the tumor, is defined as the immunoscore. An international multicenter analysis revealed that the immunoscore can accurately predict the prognosis of patients with colorectal cancer (CRC) (stage I, II, and III). However, no markers are currently available to predict the prognosis in patients with stage IV CRC. We thus aimed to analyze the immune microenvironment in patients with stage IV CRC in this study. PATIENTS AND METHODS: We analyzed the immune microenvironment of patients with stage IV CRC using immunohistochemical (IHC) staining. We evaluated the expressions of CD8 and the cases were divided into CD8 high (CD8Hi) and CD8 low (CD8Low) groups according to median CD8 expression. HLA class 1 (HLA1) expression was also evaluated using IHC staining and the cases were divided into HLA1Hi group and HLA1Low group according to 50% of HLA1 expression rate. CD8×HLA1 score was defined by the combination of CD8 and HLA1 expressions. RESULTS: CD8Hi and HLA1Hi cases were associated with better prognosis compared with CD8Low and HLA1Low cases according to a log-rank test, respectively. We defined a novel biomarker by combining CD8+ T-cell infiltration and HLA1 expression, referred to as the CD8×HLA1 score. We found that CD8×HLA1Hi cases predicted patient prognosis better than CD8×HLA1Int and CD8×HLA1Low according to a log-rank test. CONCLUSION: The combination of CD8+ T cell infiltration and HLA1 expression is crucial for cancer immune microenvironment evaluation in CRCs.


Assuntos
Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Humanos , Neoplasias Colorretais/patologia , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I/metabolismo , Prognóstico , Antígenos HLA , Microambiente Tumoral
17.
Nat Commun ; 15(1): 2271, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480731

RESUMO

T cell receptor (TCR)-engineered T cell therapy is a promising potential treatment for solid tumors, with preliminary efficacy demonstrated in clinical trials. However, obtaining clinically effective TCR molecules remains a major challenge. We have developed a strategy for cloning tumor-specific TCRs from long-term surviving patients who have responded to immunotherapy. Here, we report the identification of a TCR (10F04), which is human leukocyte antigen (HLA)-DRA/DRB1*09:01 restricted and human papillomavirus type 18 (HPV18) E784-98 specific, from a multiple antigens stimulating cellular therapy (MASCT) benefited metastatic cervical cancer patient. Upon transduction into human T cells, the 10F04 TCR demonstrated robust antitumor activity in both in vitro and in vivo models. Notably, the TCR effectively redirected both CD4+ and CD8+ T cells to specifically recognize tumor cells and induced multiple cytokine secretion along with durable antitumor activity and outstanding safety profiles. As a result, this TCR is currently being investigated in a phase I clinical trial for treating HPV18-positive cancers. This study provides an approach for developing safe and effective TCR-T therapies, while underscoring the potential of HLA class II-restricted TCR-T therapy as a cancer treatment.


Assuntos
Papillomavirus Humano 18 , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Papillomavirus Humano 18/metabolismo , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias do Colo do Útero/terapia , Antígenos HLA
18.
Adv Exp Med Biol ; 1444: 51-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467972

RESUMO

Major histocompatibility complex (MHC) class II molecules play a crucial role in immunity by presenting peptide antigens to helper T cells. Immune cells are generally tolerant to self-antigens. However, when self-tolerance is broken, immune cells attack normal tissues or cells, leading to the development of autoimmune diseases. Genome-wide association studies have shown that MHC class II is the gene most strongly associated with the risk of most autoimmune diseases. When misfolded self-antigens, called neoself antigens, are associated with MHC class II molecules in the endoplasmic reticulum, they are transported by the MHC class II molecules to the cell surface without being processed into peptides. Moreover, neoself antigens that are complexed with MHC class II molecules of autoimmune disease risk alleles exhibit distinct antigenicities compared to normal self-antigens, making them the primary targets of autoantibodies in various autoimmune diseases. Elucidation of the immunological functions of neoself antigens presented on MHC class II molecules is crucial for understanding the mechanism of autoimmune diseases.


Assuntos
Doenças Autoimunes , Estudo de Associação Genômica Ampla , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Autoanticorpos , Autoantígenos/genética , Antígenos HLA , Peptídeos/genética
19.
Adv Exp Med Biol ; 1444: 237-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467984

RESUMO

Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Polimorfismo Genético , Antígenos de Histocompatibilidade Classe II/genética , Haplótipos , Alelos
20.
HLA ; 103(3): e15441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507216

RESUMO

The current practice of HLA genotyping in deceased donors poses challenges due to limited resolution within time constraints. Nevertheless, the assessment of compatibility between anti-HLA sensitized recipients and mismatched donors remains a critical medical need, particularly when dealing with allele-specific (second field genotyping level) donor-specific antibodies. In this study, we present a customized protocol based on the NanoTYPE® HLA typing kit, employing the MinION® sequencer, which enables rapid HLA typing of deceased donors within a short timeframe of 3.75 h on average at a three-field resolution with almost no residual ambiguities. Through a prospective real-time analysis of HLA typing in 18 donors, we demonstrated the efficacy and precision of our nanopore-based method in comparison to the conventional approach and without delaying organ allocation. Indeed, this duration was consistent with the deceased donor organ donation procedure leading to organ allocation via the French Biomedicine Agency. The improved resolution achieved with our protocol enhances the security of organ allocation, particularly benefiting highly sensitized recipients who often present intricate HLA antibody profiles. By overcoming technical challenges and providing comprehensive genotyping data, this approach holds the potential to significantly impact deceased donor HLA genotyping, thereby facilitating optimal organ allocation strategies.


Assuntos
Sequenciamento por Nanoporos , Humanos , Estudos Prospectivos , Antígenos HLA/genética , Alelos , Doadores de Tecidos , Teste de Histocompatibilidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...