Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.950
Filtrar
1.
Neurología (Barc., Ed. impr.) ; 39(4): 321-328, May. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-VR-490

RESUMO

Introduction: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. Methods: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100 nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn.Results: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. Conclusions: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.(AU)


Introducción: El objetivo de este estudio fue comparar el efecto de cinco tipos de nanoliposomas PEGlados (PNL) sobre la fibrilización de la α-sinucleína (α-syn), la atenuación de la activación microglial y el silencio del gen synuclein alpha (SNCA), que codifica α-syn. Métodos: Para evaluar la inhibición de la fibrilización α-syn, utilizamos un ensayo in vitro estándar basado en la fluorescencia de la tioflavina T (ThT). A continuación, para evaluar la atenuación de la activación microglial, se cuantificó la concentración de factor de necrosis tumoral alpha (TNF-a) e interleucina 6 (IL-6)mediante ensayo ELISA en células de microglía BV2 tratadas con 100 nM de α-syn de A53T y PNL. Para determinar el silenciamiento del SNCA, se utilizó reacción en cadena de la polimerasa (PCR) en tiempo real y análisis de Western blot. Finalmente, la eficacia de las PNL se confirmó en un modelo de ratón transgénico que expresa α-syn humana. Resultados: El ensayo ThT mostró que tanto PNL1 como PNL2 inhibieron significativamente la fibrilización de α-syn. La prueba enzyme-linked immunosorbent assay (ELISA) también mostró que la producción de TNF-a e IL-6 se atenuó significativamente cuando las células microgliales se trataron con PNL1 o PNL2. También encontramos que el gen SNCA, tanto a nivel de ARN mensajero (ARNm) como de proteína, se silenciaba significativamente cuando las células de microglía BV2 se trataban con PNL1 o PNL2. Es importante destacar que la eficacia de PNL1 y PNL2 finalmente se confirmó in vivo en un modelo de ratón transgénico.Conclusiones: Los nuevos nanoliposomas multifuncionales probados en nuestro estudio inhiben la fibrilización α-syn, atenúan la activación microglial y silencian el gen SNCA. Nuestros hallazgos sugieren el potencial terapéutico de PNL1 y PNL2 para el tratamiento de sinucleinopatías.(AU)


Assuntos
Humanos , Sinucleínas , Lipossomos , alfa-Sinucleína/genética , Microglia , Modelos Animais de Doenças
2.
Int J Nanomedicine ; 19: 3513-3536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623081

RESUMO

Purpose: Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods: Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results: The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion: Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.


Assuntos
Oftalmopatias , Imidazóis , Lipossomos , Piperazinas , Humanos , Lipossomos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Microfluídica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/farmacologia , Apoptose
3.
Artigo em Inglês | MEDLINE | ID: mdl-38613219

RESUMO

Liposomes-microscopic phospholipid bubbles with bilayered membrane structure-have been a focal point in drug delivery research for the past 30 years. Current liposomes possess a blend of biocompatibility, drug loading efficiency, prolonged circulation and targeted delivery. Tailored liposomes, varying in size, charge, lipid composition, and ratio, have been developed to address diseases in specific organs, thereby enhancing drug circulation, accumulation at lesion sites, intracellular delivery, and treatment efficacy for various organ-specific diseases. For further successful development of this field, this review summarized liposomal strategies for targeting different organs in series of major human diseases, including widely studied cardiovascular diseases, liver and spleen immune diseases, chronic or acute kidney injury, neurodegenerative diseases, and organ-specific tumors. It highlights recent advances of liposome-mediated therapeutic agent delivery for disease intervention and organ rehabilitation, offering practical guidelines for designing organ-targeted liposomes. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.


Assuntos
Doenças Cardiovasculares , Lipossomos , Humanos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Lipídeos
4.
Nat Commun ; 15(1): 3162, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605024

RESUMO

The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.


Assuntos
Células Artificiais , Proteínas de Membrana , Membrana Celular/metabolismo , Membranas/metabolismo , Proteínas de Membrana/metabolismo , Lipossomos , Bicamadas Lipídicas/química
5.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605096

RESUMO

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas , Animais , Coelhos , Feminino , Lipossomos , Anticorpos Neutralizantes , Fosfolipídeos , Anticorpos Anti-HIV , Imunização , Produtos do Gene env do Vírus da Imunodeficiência Humana
6.
AAPS PharmSciTech ; 25(4): 85, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605158

RESUMO

Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Recém-Nascido , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Lipossomos , Hidrogéis
7.
J Nanobiotechnology ; 22(1): 175, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609947

RESUMO

Nonviral delivery of the CRISPR/Cas9 system provides great benefits for in vivo gene therapy due to the low risk of side effects. However, in vivo gene editing by delivering the Cas9 ribonucleoprotein (RNP) is challenging due to the poor delivery into target tissues and cells. Here, we introduce an effective delivery method for the CRISPR/Cas9 RNPs by finely tuning the formulation of ionizable lipid nanoparticles. The LNPs delivering CRISPR/Cas9 RNPs (CrLNPs) are demonstrated to induce gene editing with high efficiencies in various cancer cell lines in vitro. Furthermore, we show that CrLNPs can be delivered into tumor tissues with high efficiency, as well as induce significant gene editing in vivo. The current study presents an effective platform for nonviral delivery of the CRISPR/Cas9 system that can be applied as an in vivo gene editing therapeutic for treating various diseases such as cancer and genetic disorders.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Lipossomos , Nanopartículas , Linhagem Celular , Ribonucleoproteínas/genética
8.
Langmuir ; 40(15): 7962-7973, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577710

RESUMO

During the manufacturing process of liposome formulations, it is considered difficult to evaluate their physicochemical properties and biological profiles due to the complexity of their structure and manufacturing process. Conventional quality evaluation is labor-intensive and time-consuming; therefore, there was a need to introduce a method that could perform in-line, real-time evaluation during the manufacturing process. In this study, Raman spectroscopy was used to monitor in real time the encapsulation of drugs into liposomes and the drug release, which are particularly important quality evaluation items. Furthermore, Raman spectroscopy combined with partial least-squares (PLS) analysis was used for quantitative drug evaluation to assess consistency with results from UV-visible spectrophotometry (UV), a common quantification method. The prepared various ciprofloxacin (CPFX) liposomes were placed in cellulose tubes, and a probe-type Raman spectrophotometer was used to monitor drug encapsulation, the removal of unencapsulated drug, and drug release characteristics in real time using a dialysis method. In the Raman spectra of the liposomes prepared by remote loading, the intensities of the CPFX-derived peaks increased upon drug encapsulation and showed a slight decrease upon removal of the unencapsulated drug. Furthermore, the peak intensity decreased more gradually during the drug release. In all Raman monitoring experiments, the discrepancy between quantified values of CPFX concentration in liposomes, as measured by Raman spectroscopy combined with partial least-squares (PLS) analysis, and those obtained through ultraviolet (UV) spectrophotometry was within 6.7%. The results revealed that the quantitative evaluation of drugs using a combination of Raman spectroscopy and PLS analysis was as accurate as the evaluation using UV spectrophotometry, which was used for comparison. These results indicate the promising potential of Raman spectroscopy as an innovative method for the quality evaluation of liposomal formulations.


Assuntos
Celulose , Lipossomos , Composição de Medicamentos/métodos , Análise Espectral Raman/métodos
9.
Langmuir ; 40(15): 7883-7895, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38587263

RESUMO

N-Acylated amino acids and neurotransmitters in mammals exert significant biological effects on the nervous system, immune responses, and vasculature. N-Acyl derivatives of γ-aminobutyric acid (N-acyl GABA), which belong to both classes mentioned above, are prominent among them. In this work, a homologous series of N-acyl GABAs bearing saturated N-acyl chains (C8-C18) have been synthesized and characterized with respect to self-assembly, thermotropic phase behavior, and supramolecular organization. Differential scanning calorimetric studies revealed that the transition enthalpies and entropies of N-acyl GABAs are linearly dependent on the acyl chain length. The crystal structure of N-tridecanoyl GABA showed that the molecules are packed in bilayers with the acyl chains aligned parallel to the bilayer normal and that the carboxyl groups from opposite layers associate to form dimeric structures involving strong O-H···O hydrogen bonds. In addition, N-H···O and C-H···O hydrogen bonds between amide moieties of adjacent molecules within each layer stabilize the molecular packing. Powder X-ray diffraction studies showed odd-even alternation in the d spacings, suggesting that the odd chain and even chain compounds pack differently. Equimolar mixtures of N-palmitoyl GABA and dipalmitoylphosphatidylcholine (DPPC) were found to form stable unilamellar vesicles with diameters of ∼300-340 nm, which could encapsulate doxorubicin, an anticancer drug, with higher efficiency and better release characteristics than DPPC liposomes at physiologically relevant pH. These liposomes exhibit faster release of doxorubicin at acidic pH (<7.0), indicating their potential utility as drug carriers in cancer chemotherapy.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipossomos , Animais , 1,2-Dipalmitoilfosfatidilcolina/química , Termodinâmica , Doxorrubicina , Ácido gama-Aminobutírico , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Mamíferos
10.
Anesthesiology ; 140(5): 865-867, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592359
11.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574119

RESUMO

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Assuntos
Rotavirus , Rotavirus/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Cálcio/metabolismo , Lipossomos/análise , Lipossomos/metabolismo
12.
BMC Pulm Med ; 24(1): 159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561695

RESUMO

Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Lipossomos/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células
13.
BMC Complement Med Ther ; 24(1): 155, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589838

RESUMO

Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.


Assuntos
Anti-Infecciosos , Lavandula , Lipossomos , Nanopartículas , Staphylococcus aureus , Lipídeos , Géis
14.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38587486

RESUMO

ß-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.


Assuntos
COVID-19 , Proteína do X Frágil de Retardo Mental , Lipossomos , Proteínas de Ligação a RNA , SARS-CoV-2 , Humanos , Proliferação de Células , Análise por Conglomerados , COVID-19/metabolismo , COVID-19/virologia , Citoplasma , Proteína do X Frágil de Retardo Mental/metabolismo , Células HeLa , Lipossomos/metabolismo , Organelas , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo
15.
Sci Rep ; 14(1): 8247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589438

RESUMO

The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Disfunção Cognitiva , Diabetes Mellitus Experimental , Lipossomos , Metformina , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Metformina/farmacologia , Metformina/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
16.
J Nanobiotechnology ; 22(1): 156, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589867

RESUMO

Immunotherapy has revolutionized the treatment of cancer. However, its efficacy remains to be optimized. There are at least two major challenges in effectively eradicating cancer cells by immunotherapy. Firstly, cancer cells evade immune cell killing by down-regulating cell surface immune sensors. Secondly, immune cell dysfunction impairs their ability to execute anti-cancer functions. Radiotherapy, one of the cornerstones of cancer treatment, has the potential to enhance the immunogenicity of cancer cells and trigger an anti-tumor immune response. Inspired by this, we fabricate biofunctionalized liposome-like nanovesicles (BLNs) by exposing irradiated-cancer cells to ethanol, of which ethanol serves as a surfactant, inducing cancer cells pyroptosis-like cell death and facilitating nanovesicles shedding from cancer cell membrane. These BLNs are meticulously designed to disrupt both of the aforementioned mechanisms. On one hand, BLNs up-regulate the expression of calreticulin, an "eat me" signal on the surface of cancer cells, thus promoting macrophage phagocytosis of cancer cells. Additionally, BLNs are able to reprogram M2-like macrophages into an anti-cancer M1-like phenotype. Using a mouse model of malignant pleural effusion (MPE), an advanced-stage and immunotherapy-resistant cancer model, we demonstrate that BLNs significantly increase T cell infiltration and exhibit an ablative effect against MPE. When combined with PD-1 inhibitor (α-PD-1), we achieve a remarkable 63.6% cure rate (7 out of 11) among mice with MPE, while also inducing immunological memory effects. This work therefore introduces a unique strategy for overcoming immunotherapy resistance.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/metabolismo , Neoplasias/radioterapia , Neoplasias/metabolismo , Macrófagos/metabolismo , Imunoterapia , Etanol/metabolismo , Linhagem Celular Tumoral
17.
PLoS One ; 19(4): e0300467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593146

RESUMO

Liposome nanoparticles can carry a wide range of therapeutic molecules including small molecules and nucleic acid-based therapeutics. Potential benefits include translocation across physiological barriers, reduced systemic toxicity, and enhanced pharmacokinetic parameters such as absorption, distribution, selective release and optimal elimination kinetics. Liposome nanoparticles can be generated with a wide range of natural and synthetic lipid-based molecules that confer desirable properties depending on the desired therapeutic application Nel et al (2023), Large (2021), Elkhoury (2020). This protocol article seeks to detail the procedures involved in the production of cationic liposomes using thin-film dispersed hydration method with an estimated uniform size of 60-70 nm for targeted drug administration in tumor cells, by modifying the previous one also published by the same authors cited here. The method was carrying out using N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl (DOTAP, 2 mg) as cationic lipid and cholesterol (0.5 mg) in a molar ratio of 7:3 respectively. The liposomal suspension was obtained and its physical, chemical and biological properties were determined. A two-step extrusion process, using 100 nm and 50 nm polycarbonate membranes, was carried. The results demonstrate generation of liposome nanoparticles with a size of 60-70 nm stable for at least 16 weeks and with an encapsulation efficiency of approximately 81% using Doxorubicin.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipossomos/química , Nanopartículas/química , Doxorrubicina , Lipídeos/química
18.
Respir Res ; 25(1): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594676

RESUMO

BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.


Assuntos
Pneumopatias , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Lipossomos/metabolismo , Vimentina/metabolismo , Lipopolissacarídeos/farmacologia , Ácido Clodrônico/farmacologia , Ácido Clodrônico/metabolismo , Linfócitos T CD8-Positivos , Pulmão , Macrófagos/metabolismo , Pneumopatias/metabolismo , Exposição Ambiental , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
19.
J Transl Med ; 22(1): 339, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594760

RESUMO

One of the most effective strategies to fight viruses and handle health diseases is vaccination. Recent studies and current applications are moving on antigen, DNA and RNA-based vaccines to overcome the limitations related to the conventional vaccination strategies, such as low safety, necessity of multiple injection, and side effects. However, due to the instability of pristine antigen, RNA and DNA molecules, the use of nanocarriers is required. Among the different nanocarriers proposed for vaccinal applications, three types of nanovesicles were selected and analysed in this review: liposomes, transfersomes and niosomes. PubMed, Scopus and Google Scholar databases were used for searching recent papers on the most frequently used conventional and innovative methods of production of these nanovesicles. Weaknesses and limitations of conventional methods (i.e., multiple post-processing, solvent residue, batch-mode processes) can be overcome using innovative methods, in particular, the ones assisted by supercritical carbon dioxide. SuperSomes process emerged as a promising production technique of solvent-free nanovesicles, since it can be easily scaled-up, works in continuous-mode, and does not require further post-processing steps to obtain the desired products. As a result of the literature analysis, supercritical carbon dioxide assisted methods attracted a lot of interest for nanovesicles production in the vaccinal field. However, despite their numerous advantages, supercritical processes require further studies for the production of liposomes, transfersomes and niosomes with the aim of reaching well-defined technologies suitable for industrial applications and mass production of vaccines.


Assuntos
Lipossomos , Vacinas , Lipossomos/química , Dióxido de Carbono/química , Solventes , DNA , RNA
20.
Sci Adv ; 10(15): eadk3201, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598629

RESUMO

Disruptions in metal balance can trigger a synergistic interplay of cuproptosis and ferroptosis, offering promising solutions to enduring challenges in oncology. Here, we have engineered a Cellular Trojan Horse, named MetaCell, which uses live neutrophils to stably internalize thermosensitive liposomal bimetallic Fe-Cu MOFs (Lip@Fe-Cu-MOFs). MetaCell can instigate cuproptosis and ferroptosis, thereby enhancing treatment efficacy. Mirroring the characteristics of neutrophils, MetaCell can evade the immune system and not only infiltrate tumors but also respond to inflammation by releasing therapeutic components, thereby surmounting traditional treatment barriers. Notably, Lip@Fe-Cu-MOFs demonstrate notable photothermal effects, inciting a targeted release of Fe-Cu-MOFs within cancer cells and amplifying the synergistic action of cuproptosis and ferroptosis. MetaCell has demonstrated promising treatment outcomes in tumor-bearing mice, effectively eliminating solid tumors and forestalling recurrence, leading to extended survival. This research provides great insights into the complex interplay between copper and iron homeostasis in malignancies, potentially paving the way for innovative approaches in cancer treatment.


Assuntos
Ferroptose , Neoplasias , Animais , Camundongos , Cobre , Inflamação , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...