Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258.339
Filtrar
1.
PLoS One ; 19(4): e0300964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557973

RESUMO

Human immunoglobulin G (IgG) exists as four subclasses IgG1-4, each of which has two Fab subunits joined by two hinges to a Fc subunit. IgG4 has the shortest hinge with 12 residues. The Fc subunit has two glycan chains, but the importance of glycosylation is not fully understood in IgG4. Here, to evaluate the stability and structure of non-glycosylated IgG4, we performed a multidisciplinary structural study of glycosylated and deglycosylated human IgG4 A33 for comparison with our similar study of human IgG1 A33. After deglycosylation, IgG4 was found to be monomeric by analytical ultracentrifugation; its sedimentation coefficient of 6.52 S was reduced by 0.27 S in reflection of its lower mass. X-ray and neutron solution scattering showed that the overall Guinier radius of gyration RG and its cross-sectional values after deglycosylation were almost unchanged. In the P(r) distance distribution curves, the two M1 and M2 peaks that monitor the two most common distances within IgG4 were unchanged following deglycosylation. Further insight from Monte Carlo simulations for glycosylated and deglycosylated IgG4 came from 111,382 and 117,135 possible structures respectively. Their comparison to the X-ray and neutron scattering curves identified several hundred best-fit models for both forms of IgG4. Principal component analyses showed that glycosylated and deglycosylated IgG4 exhibited different conformations from each other. Within the constraint of unchanged RG and M1-M2 values, the glycosylated IgG4 models showed more restricted Fc conformations compared to deglycosylated IgG4, but no other changes. Kratky plots supported this interpretation of greater disorder upon deglycosylation, also observed in IgG1. Overall, these more variable Fc conformations may demonstrate a generalisable impact of deglycosylation on Fc structures, but with no large conformational changes in IgG4 unlike those seen in IgG1.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Imunoglobulina G/química , Estudos Transversais , Modelos Moleculares , Fragmentos Fc das Imunoglobulinas/química
2.
Sci Rep ; 14(1): 8146, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584189

RESUMO

Chronic hepatitis B remains a worldwide health concern. Presently, many drugs, such as Clevudine and Telbivudine, are recommended for the treatment of chronic hepatitis B disease. For this purpose, the quantum chemical analysis of ELUMO-HOMO (Egap), ionization potential (IP), electron affinity (EA), electronegativity (EN), chemical hardness (η), chemical potential (µ), chemical softness (S), electrophilicity index (ω), electron accepting capability (ω+), electron-donating capability (ω-), Nucleophilicity index (N), additional electronic charge (∆Nmax), Optical softness (σ0) and Dipole Moment, IR and UV-Vis spectra, molecular electrostatic potential (MEP) profile, Mulliken charge analysis, natural bond orbital (NBO) were examined in this study. The dipole moment of the compounds suggests their binding pose and predicted binding affinity. The electrophilic and nucleophilic regions were identified, and techniques such as NBO, UV-Vis, and IR were used to gain insights into the molecular structure, electronic transitions, and potential drug design for Hepatitis B treatment. Calculations for this study were carried out using the Gaussian 09 program package coupled with the DFT/TDDFT technique. The hybrid B3LYP functional method and the 6-311++G(d, p) basis set were used for the calculations.


Assuntos
Arabinofuranosiluracila/análogos & derivados , Hepatite B Crônica , Humanos , Modelos Moleculares , Telbivudina , Espectroscopia de Infravermelho com Transformada de Fourier , Hepatite B Crônica/tratamento farmacológico , Teoria Quântica , Análise Espectral Raman , Espectrofotometria Ultravioleta
3.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588001

RESUMO

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-abl , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Modelos Moleculares , Proteínas Tirosina Quinases/metabolismo , Domínios de Homologia de src , Mesilato de Imatinib/farmacologia
4.
Protein Sci ; 33(5): e4975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588275

RESUMO

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/química , Conformação Molecular , Modelos Moleculares
5.
Pol Merkur Lekarski ; 52(2): 197-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642355

RESUMO

OBJECTIVE: Aim: The goal is to discover QSAR of Lomefloxacin as antibacterial activity. PATIENTS AND METHODS: Materials and Methods: A number of lomefloxacins analogs activities were studied by program Windows Chem SW. The analogues were obtained and energy minimization was carried out through Molecular Modeling Program, the calculations were performed using General Atomic and Molecular Electronic Structure System (GAMESS) software. RESULTS: Results: There were six descriptions (N-quinoline more (-) ev charge, Kinetic Energy, Potential Energy, Log p, Log S, F6 charge) results have highly compatible of physicochemical properties with lomefloxacin analogs activities. It can be used to estimate the activities depending on QSAR equation of lomefloxacin analogs. CONCLUSION: Conclusions: The parameters used for calculation were depending on the quantum chemical was employed in deriving from computational study of properties and can used to predict the activities of certain analogs of Lomefloxacins as antibacterial compounds.


Assuntos
Fluoroquinolonas , Relação Quantitativa Estrutura-Atividade , Humanos , Fluoroquinolonas/farmacologia , Modelos Moleculares , Antibacterianos/farmacologia
6.
Biophys Chem ; 309: 107231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569455

RESUMO

Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.


Assuntos
Nanoestruturas , Nanoestruturas/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Moleculares
7.
ACS Chem Biol ; 19(4): 886-895, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38576157

RESUMO

Fungal paracyclophane-decahydrofluorene-containing natural products are complex polycyclic metabolites derived from similar hybrid PKS-NRPS pathways. Herein we studied the biosynthesis of pyrrocidines, one representative of this family, by gene inactivation in the producer Sarocladium zeae coupled to thorough metabolic analysis and molecular modeling of key enzymes. We characterized nine pyrrocidines and analogues as well as in mutants a variety of accumulating metabolites with new structures including rare cis-decalin, cytochalasan, and fused 6/15/5 macrocycles. This diversity highlights the extraordinary plasticity of the pyrrocidine biosynthetic gene cluster. From accumulating metabolites, we delineated the scenario of pyrrocidine biosynthesis. The ring A of the decahydrofluorene is installed by PrcB, a membrane-bound cyclizing isomerase, on a PKS-NRPS-derived pyrrolidone precursor. Docking experiments in PrcB allowed us to characterize the active site suggesting a mechanism triggered by arginine-mediated deprotonation at the terminal methyl of the substrate. Next, two integral membrane proteins, PrcD and PrcE, each predicted as a four-helix bundle, perform hydroxylation of the pyrrolidone ring and paracyclophane formation, respectively. Modelization of PrcE highlights a topological homology with vitamin K oxido-reductase and the presence of a disulfide bond. Our results suggest a previously unsuspected coupling mechanism via a transient loss of aromaticity of tyrosine residue to form the strained paracyclophane motif. Finally, the lipocalin-like protein PrcX drives the exo-cycloaddition yielding ring B and C of the decahydrofluorene to afford pyrrocidine A, which is transformed by a reductase PrcI to form pyrrocidine B. These insights will greatly facilitate the microbial production of pyrrocidine analogues by synthetic biology.


Assuntos
Racionalização , Tirosina , Modelos Moleculares , Pirrolidinonas/química , Oxirredutases
8.
Biochem Biophys Res Commun ; 710: 149898, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598903

RESUMO

Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown. Herein, we determined the crystal structure of the N-terminal domain of the type II antitoxin MazE-mt10 from Mycobacterium tuberculosis, revealing a homodimer of the ribbon-helix-helix (RHH) fold with distinct DNA binding specificity. NMR studies demonstrated that full-length MazE-mt10 forms the helical and coiled states in equilibrium within the C-terminal region, and that helical propensity is allosterically enhanced by the N-terminal binding to the cognate operator DNA. This coil-to-helix transition may promote toxin binding/neutralization of MazE-mt10 and further stabilize the TA-DNA transcription repressor. This is supported by many crystal structures of type II TA complexes in which antitoxins form an α-helical structure at the TA interface. The hidden helical state of free MazE-mt10 in solution, favored by DNA binding, adds a new dimension to the regulatory mechanism of type II TA systems. Furthermore, complementary approaches using X-ray crystallography and NMR allow us to study the allosteric interdomain interplay of many other full-length antitoxins of type II TA systems.


Assuntos
Antitoxinas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Antitoxinas/química , Modelos Moleculares , Fatores de Transcrição/metabolismo , DNA/metabolismo , Proteínas de Bactérias/metabolismo
9.
Nat Commun ; 15(1): 3110, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600112

RESUMO

Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Humanos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , DNA/metabolismo , Mutação , Modelos Moleculares
10.
Drug Dev Res ; 85(3): e22184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634273

RESUMO

Alzheimer's disease (AD), one of the main causes of dementia, is a neurodegenerative disorder. Cholinesterase inhibitors are used in the treatment of AD, but prolonged use of these drugs can lead to serious side effects. Drug repurposing is an approach that aims to reveal the effectiveness of drugs in different diseases beyond their clinical uses. In this work, we investigated in vitro and in silico inhibitory effects of 11 different drugs on cholinesterases. The results showed that trimebutine, theophylline, and levamisole had the highest acetylcholinesterase inhibitory actions among the tested drugs, and these drugs inhibited by 68.70 ± 0.46, 53.25 ± 3.40, and 44.03 ± 1.20%, respectively at 1000 µM. In addition, these drugs are bound to acetylcholinesterase via competitive manner. Molecular modeling predicted good fitness in acetylcholinesterase active site for these drugs and possible central nervous system action for trimebutine. All of these results demonstrated that trimebutine was determined to be the drug with the highest potential for use in AD.


Assuntos
Doença de Alzheimer , Trimebutina , Humanos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Trimebutina/uso terapêutico , Inibidores da Colinesterase/química , Modelos Moleculares , Simulação de Acoplamento Molecular
11.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 129-142, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38577890

RESUMO

This report presents a comprehensive investigation into the synthesis and characterization of Schiff base compounds derived from benzenesulfonamide. The synthesis process, involved the reaction between N-cycloamino-2-sulfanilamide and various substituted o-salicylaldehydes, resulted in a set of compounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized compounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substantiated by molecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The exploration of frontier molecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyrrolidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 20, emerged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piperidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed remarkeable inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluorouracil. The exploration of molecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of molecules.


Assuntos
Neoplasias do Colo , Bases de Schiff , Humanos , Bases de Schiff/química , Modelos Moleculares , Conformação Molecular , Cristalografia por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Ligação de Hidrogênio , Fenóis
12.
J Mater Chem B ; 12(15): 3703-3709, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38505984

RESUMO

The control of supramolecular DNA assembly through external stimuli such as light represents a promising approach to control bioreactions, and modulate hybridization or delivery processes. Here, we report on the design of nucleobase-containing arylazopyrazole photoswitches that undergo chiral organization upon self-assembly along short DNA templates. Chiroptical spectroscopy shows that the specific nucleobases allow selectivity in the resulting supramolecular DNA complexes, and UV light irradiation triggers partial desorption of the arylazopyrazole photoswitches. Molecular modeling studies reveal the differences of binding modes between the two configurations in the templated assembly. Remarkably, our results show that the photoswitching behaviour controls the self-assembly process along DNA, opening the way to potential applications as nano- and biomaterials.


Assuntos
DNA , DNA/química , Modelos Moleculares , Hibridização de Ácido Nucleico
13.
Int J Biol Macromol ; 265(Pt 2): 131131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527679

RESUMO

Glycoside hydrolases (GHs) are industrially important enzymes that hydrolyze glycosidic bonds in glycoconjugates. In this study, we found a GH3 ß-glucosidase (CcBgl3B) from Cellulosimicrobium cellulans sp. 21 was able to selectively hydrolyze the ß-1,6-glucosidic bond linked glucose of ginsenosides. X-ray crystallographic studies of the ligand complex ginsenoside-specific ß-glucosidase provided a novel finding that support the catalytic mechanism of GH3. The substrate was clearly identified within the catalytic center of wild-type CcBgl3B, revealing that the C1 atom of the glucose was covalently bound to the Oδ1 group of the conserved catalytic nucleophile Asp264 as an enzyme-glycosyl intermediate. The glycosylated Asp264 could be identified by mass spectrometry. Through site-directed mutagenesis studies with Asp264, it was found that the covalent intermediate state formed by Asp264 and the substrate was critical for catalysis. In addition, Glu525 variants (E525A, E525Q and E525D) showed no or marginal activity against pNPßGlc; thus, this residue could supply a proton for the reaction. Overall, our study provides an insight into the catalytic mechanism of the GH3 enzyme CcBgl3B.


Assuntos
Glicosídeo Hidrolases , beta-Glucosidase , Raios X , Hidrólise , Modelos Moleculares , beta-Glucosidase/química , Glicosídeo Hidrolases/química , Glucose/metabolismo , Catálise , Cristalografia por Raios X , Especificidade por Substrato
14.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540742

RESUMO

Recently, several ATP-binding cassette (ABC) importers have been found to adopt the typical fold of type IV ABC exporters. Presumably, these importers would function under the transport scheme of "alternating access" like those exporters, cycling through inward-open, occluded, and outward-open conformations. Understanding how the exporter-like importers move substrates in the opposite direction requires structural studies on all the major conformations. To shed light on this, here we report the structure of yersiniabactin importer YbtPQ from uropathogenic Escherichia coli in the occluded conformation trapped by ADP-vanadate (ADP-Vi) at a 3.1 Å resolution determined by cryo-electron microscopy. The structure shows unusual local rearrangements in multiple helices and loops in its transmembrane domains (TMDs). In addition, the dimerization of the nucleotide-binding domains (NBDs) promoted by the vanadate trapping is highlighted by the "screwdriver" action at one of the two hinge points. These structural observations are rare and thus provide valuable information to understand the structural plasticity of the exporter-like ABC importers.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vanadatos , Conformação Proteica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Trifosfato de Adenosina
15.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542178

RESUMO

In mammals, glycated serum albumin (gSA) contributes to the pathogenesis of many metabolic diseases by activating the receptors (RAGE) for advanced glycation end products (AGEs). Many aspects of the gSA-RAGE interaction remain unknown. The purpose of the present paper was to study the interaction of glycated human albumin (gHSA) with RAGE using molecular modeling methods. Ten models of gHSA modified with different lysine residues to carboxymethyl-lysines were prepared. Complexes of gHSA-RAGE were obtained by the macromolecular docking method with subsequent molecular dynamics simulation (MD). According to the MD, the RAGE complexes with gHSA glycated at Lys233, Lys64, Lys525, Lys262 and Lys378 are the strongest. Three-dimensional models of the RAGE dimers with gHSA were proposed. Additional computational experiments showed that the binding of fatty acids (FAs) to HSA does not affect the ability of Lys525 (the most reactive lysine) to be glycated. In contrast, modification of Lys525 reduces the affinity of albumin for FA. The interspecies differences in the molecular structure of albumin that may affect the mechanism of the gSA-RAGE interaction were discussed. The obtained results will help us to learn more about the molecular basis for the involvement of serum albumin in the AGE/RAGE axis and improve the methodology for studying cellular signaling pathways involving RAGE.


Assuntos
Lisina , Albumina Sérica , Animais , Humanos , Albumina Sérica/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Mamíferos/metabolismo , Modelos Moleculares , Albumina Sérica Humana , Receptor para Produtos Finais de Glicação Avançada
16.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542345

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of images of the protein in multiple conformations. Various methods exist for capturing the conformational variability through analysis of cryo-EM data. Here, we analyzed the conformational variability in the hexameric AAA + ATPase p97, a complex with a six-fold rotational symmetric core surrounded by six flexible N-domains. We compared the performance of discrete classification methods with our recently developed method, MDSPACE, which uses 3D-to-2D flexible fitting of an atomic structure to images based on molecular dynamics (MD) simulations. Our analysis detected a novel conformation adopted by approximately 2% of the particles in the dataset and determined that the N-domains of p97 sway by up to 60° around a central position. This study demonstrates the application of MDSPACE in analyzing the continuous conformational changes in partially symmetrical protein complexes, systems notoriously difficult to analyze due to the alignment errors caused by their partial symmetry.


Assuntos
Adenosina Trifosfatases , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Microscopia Crioeletrônica/métodos , Adenosina Trifosfatases/metabolismo
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124091, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447439

RESUMO

We prepared a naturally occurring flavanoid namely quercetin from tea leaves and analyzed by Absorption, Emission, FT-IR, 1H, 13C nmr spectra and ESI-MS analysis. The inclusion behavior of quercetin in cyclodextrins like α-, ß-, γ-, per-6-ABCD and mono-6-ABCD cavities were supported such as UV-vis., Emission, FT-IR and ICD spectra and energy minimization studies. From the absorption and emission results, the type of complexes formed were found to depend on stoichiometry of Host:Guest. FT-IR data of CD complexes of quercetin supported inclusion complex formation of the substrate with α-, ß- and γ-CDs. The inclusion of host-guest complexation of quercetin with α-, ß-, γ-CDs, per-6-ABCD and mono-6-ABCDs provides very valuable information about the CD:quercetin complexes, the study also shows that ß-CD complexation improves water solubility, chemical stability and bioavailability of quercetin. Besides, phase solubility studies also supported the formation of 1:1 drug-CD soluble complexes. All these spectral results provide insight into the binding behavior of substrate into CD cavity in the order per-6-ABCD > Mono-6-ABCD > γ-CD > ß-CD > α-CD. The proposed model also finds strong support from the fact with excess CD this exciton coupling disappears indicates the formation of only 1:1 complex.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Quercetina/química , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Modelos Moleculares , Ciclodextrinas/química , Solubilidade
18.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38426310

RESUMO

MOTIVATION: Predicting molecular properties is a pivotal task in various scientific domains, including drug discovery, material science, and computational chemistry. This problem is often hindered by the lack of annotated data and imbalanced class distributions, which pose significant challenges in developing accurate and robust predictive models. RESULTS: This study tackles these issues by employing pretrained molecular models within a few-shot learning framework. A novel dynamic contrastive loss function is utilized to further improve model performance in the situation of class imbalance. The proposed MolFeSCue framework not only facilitates rapid generalization from minimal samples, but also employs a contrastive loss function to extract meaningful molecular representations from imbalanced datasets. Extensive evaluations and comparisons of MolFeSCue and state-of-the-art algorithms have been conducted on multiple benchmark datasets, and the experimental data demonstrate our algorithm's effectiveness in molecular representations and its broad applicability across various pretrained models. Our findings underscore MolFeSCues potential to accelerate advancements in drug discovery. AVAILABILITY AND IMPLEMENTATION: We have made all the source code utilized in this study publicly accessible via GitHub at http://www.healthinformaticslab.org/supp/ or https://github.com/zhangruochi/MolFeSCue. The code (MolFeSCue-v1-00) is also available as the supplementary file of this paper.


Assuntos
Algoritmos , Benchmarking , Descoberta de Drogas , Modelos Moleculares , Software
19.
Front Immunol ; 15: 1357342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524133

RESUMO

Introduction: Diabetes mellitus (DM) is recognized as one of the oldest chronic diseases and has become a significant public health issue, necessitating innovative therapeutic strategies to enhance patient outcomes. Traditional treatments have provided limited success, highlighting the need for novel approaches in managing this complex disease. Methods: In our study, we employed graph signature-based methodologies in conjunction with molecular simulation and free energy calculations. The objective was to engineer the CA33 monoclonal antibody for effective targeting of the aP2 antigen, aiming to elicit a potent immune response. This approach involved screening a mutational landscape comprising 57 mutants to identify modifications that yield significant enhancements in binding efficacy and stability. Results: Analysis of the mutational landscape revealed that only five substitutions resulted in noteworthy improvements. Among these, mutations T94M, A96E, A96Q, and T94W were identified through molecular docking experiments to exhibit higher docking scores compared to the wild-type. Further validation was provided by calculating the dissociation constant (KD), which showed a similar trend in favor of these mutations. Molecular simulation analyses highlighted T94M as the most stable complex, with reduced internal fluctuations upon binding. Principal components analysis (PCA) indicated that both the wild-type and T94M mutant displayed similar patterns of constrained and restricted motion across principal components. The free energy landscape analysis underscored a single metastable state for all complexes, indicating limited structural variability and potential for high therapeutic efficacy against aP2. Total binding free energy (TBE) calculations further supported the superior performance of the T94M mutation, with TBE values demonstrating the enhanced binding affinity of selected mutants over the wild-type. Discussion: Our findings suggest that the T94M substitution, along with other identified mutations, significantly enhances the therapeutic potential of the CA33 antibody against DM by improving its binding affinity and stability. These results not only contribute to a deeper understanding of antibody-antigen interactions in the context of DM but also provide a valuable framework for the rational design of antibodies aimed at targeting this disease more effectively.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Simulação de Acoplamento Molecular , Modelos Moleculares , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anticorpos Monoclonais , Imunidade Adaptativa
20.
MAbs ; 16(1): 2322533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477253

RESUMO

Antibodies have increasingly been developed as drugs with over 100 now licensed in the US or EU. During development, it is often necessary to increase or reduce the affinity of an antibody and rational attempts to do so rely on having a structure of the antibody-antigen complex often obtained by modeling. The antigen-binding site consists primarily of six loops known as complementarity-determining regions (CDRs), and an open question has been whether these loops change their conformation when they bind to an antigen. Existing surveys of antibody-antigen complex structures have only examined CDR conformational change in case studies or small-scale surveys. With an increasing number of antibodies where both free and complexed structures have been deposited in the Protein Data Bank, a large-scale survey of CDR conformational change during binding is now possible. To this end, we built a dataset, AbAgDb, that currently includes 177 antibodies with high-quality CDRs, each of which has at least one bound and one unbound structure. We analyzed the conformational change of the Cα backbone of each CDR upon binding and found that, in most cases, the CDRs (other than CDR-H3) show minimal movement, while 70.6% and 87% of CDR-H3s showed global Cα RMSD ≤ 1.0Å and ≤ 2.0Å, respectively. We also compared bound CDR conformations with the conformational space of unbound CDRs and found most of the bound conformations are included in the unbound conformational space. In future, our results will contribute to developing insights into antibodies and new methods for modeling and docking.


Assuntos
Antígenos , Regiões Determinantes de Complementaridade , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica , Regiões Determinantes de Complementaridade/química , Complexo Antígeno-Anticorpo/química , Sítios de Ligação de Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...