Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.086
Filtrar
1.
Sci Rep ; 14(1): 8404, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600158

RESUMO

The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Camundongos , Via de Sinalização Wnt , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Células Estromais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Resistência a Medicamentos , Células da Medula Óssea , Microambiente Tumoral/fisiologia
2.
Wei Sheng Yan Jiu ; 53(2): 243-256, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604960

RESUMO

OBJECTIVE: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen. METHODS: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method. RESULTS: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314. The Shenzhen isolates were clustered with isolates from Southeast Asian countries such as Vietnam and Thailand on clade 314.2, and the single nucleotide polymorphism distance between local strains in Shenzhen was large, indicating dissemination. In this study, a total of 17 drug resistance genes/mutations in 9 categories were detected in the genome of Salmonella Kentucky ST314, carrying 3 extended spectrum beta-lactamases(ESBLs), including bla_(CTX-M-24)(14.3%, 2/14), bla_(CTX-M-55)(7.1%, 1/14), and bla_(CTX-M-130)(14.3%, 2/14), all located on plasmids. Regarding quinolone resistance factors, two plasmid-mediated quinolone resistance(PMQR) genes were identified in the genome: qnrB6(71.4%, 10/14) and aac(6')Ib-cr(78.6%, 11/14), a quinolone resistance quinolone resistance-determining regions(QRDR) mutation T57 S(100%, 14/14). The multi-drug resistance rate of Salmonella Kentucky ST314 in Shenzhen was 92.86%(13/14)with the highest rate of resistance to tetracycline and cotrimoxazole(100%, 14/14), followed by chloramphenicol(92.86%, 13/14), cefotaxime and ampicillin(78.57%, 11/14), ciprofloxacin and nalidixic acid(71.43%, 10/14), and ampicillin-sulbactam had the lowest resistance rate(21.43%, 3/14). CONCLUSION: ST314 is the second most prevalent ST type among Salmonella Kentucky in Shenzhen, mainly isolated from food, especially poultry; phylogenetic analysis suggests that ST314 is a disseminated infection and the genome shows a highly genetically conserved phenotype. Drug resistance of Salmonella Kentucky ST314 is very serious, especially QRDR mutation, PMQR gene co-mediated quinolone resistance and plasmid-mediated cephalosporin resistance are prominent and deserve extensive attention.


Assuntos
Doenças Transmitidas por Alimentos , Quinolonas , Humanos , Kentucky , Filogenia , Salmonella , Antibacterianos/farmacologia , Plasmídeos/genética , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética
3.
Cells ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607003

RESUMO

Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.


Assuntos
Via de Sinalização Hippo , Neoplasias , Estados Unidos , Animais , Humanos , Drosophila melanogaster/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Resistência a Medicamentos
4.
Chem Biol Drug Des ; 103(4): e14513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570322

RESUMO

Taxol (paclitaxel) is the first approved microtubule-stabilizing agent (MSA) by binding stoichiometrically to tubulin, which is considered to be one of the most significant advances in first-line chemotherapy against diverse tumors. However, a large number of residue missence mutations harboring in the tubulin have been observed to cause acquired drug resistance, largely limiting the clinical application of Taxol and its analogs in chemotherapy. A systematic investigation of the intermolecular interactions between the Taxol and various tubulin mutants would help to establish a comprehensive picture of drug response to tubulin mutations in clinical treatment of cancer, and to design new MSA agents with high potency and selectivity to overcome drug resistance. In this study, we described an integration of in silico analysis and in vitro assay (iSiV) to profile Taxol against a panel of 149 clinically observed, cancer-associated missence mutations in ß-tubulin at molecular and cellular levels, aiming to a systematic understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity conferring from tubulin mutations. It is revealed that the Taxol-resistant mutations can be classified into three types: (I) nonbonded interaction broken due to mutation, (II) steric hindrance caused by mutation, and (III) conformational change upon mutation. In addition, we identified three new Taxol-resistant mutations (C239Y, T274I, and R320P) that can largely reduce the binding affinity of Taxol to tubulin at molecular level, in which the T274I and R320P were observed to considerably impair the antitumor activity of Taxol at cellular level. Moreover, a novel drug-susceptible mutation (M363T) was also identified, which improves Taxol affinity by 2.6-fold and decreases Taxol antitumor EC50 values from 29.4 to 18.7 µM.


Assuntos
Paclitaxel , Tubulina (Proteína) , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Mutação , Resistência a Medicamentos
6.
Malar J ; 23(1): 92, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570791

RESUMO

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Prevalência , Togo/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Biomarcadores , Combinação de Medicamentos , Plasmodium falciparum/genética
7.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643090

RESUMO

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Micobactérias não Tuberculosas , Resistência a Medicamentos , Internet
8.
Technol Cancer Res Treat ; 23: 15330338241239188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634139

RESUMO

Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , Microambiente Tumoral , Resistência a Medicamentos , Regulação Neoplásica da Expressão Gênica
9.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622558

RESUMO

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
11.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564252

RESUMO

Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.


Assuntos
Leucemia Mieloide Aguda , Transdução de Sinais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Resistência a Medicamentos , Tirosina Quinase 3 Semelhante a fms/genética
12.
Clin Lab ; 70(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623683

RESUMO

BACKGROUND: Ureaplasma urealyticum (U. urealyticum) commonly occurs in female genitourinary infections, and its different biovars and serotypes have varying degrees of resistance to different antibiotics. This study aimed to ex-plore the characteristics of U. urealyticum infection and drug-resistant profiles in Chinese females. METHODS: We included 1,045 females with genital tract infections who visited Tangshan Workers' Hospital and Tangshan Maternal and Child Health Center from September 2017 to December 2018. The bacteria were selectively cultured, and drug sensitivity experiments were conducted. Eight pairs of oligonucleotide primers were designed, and polymerase chain reaction (PCR) was performed to amplify specific DNA fragments to perform bacterial strain typing. RESULTS: Among the 1,045 participants included, 566 (54.11%) participants were positive for mycoplasma infection. There were 432 (41.34%) participants with U. urealyticum infection, accounting for 76.33% of the positive participants. The infection rate of U. urealyticum was the highest in females who were 21 - 30 years old, followed by those who were 31 - 40 years old. Ureaplasma urealyticum showed the highest sensitivity to tetracyclines and the greatest resistance to quinolones. The biovar 1 of U. urealyticum with the highest detection rate of serotype 4, accounted for 66.88%. The biovar 2 of U. urealyticum mainly showed mixed subtypes 2 and 3. Biovar 2 showed higher resistance to sparfloxacin, clarithromycin, josamycin, and doxycycline than biovar 1. CONCLUSIONS: Women might be more susceptible to U. urealyticum, especially if they are of childbearing age. Urea-plasma urealyticum is mainly caused by a single serotype 6 infection. The resistance of U. urealyticum to quinolone (e.g., norfloxacin) is a great concern. Sparfloxacin, clarithromycin, ciprofloxacin, and doxycycline might be more suitable for people with biovar 1 infection. Biotyping may facilitate clinical drug use and help avoid the emergence of drug-resistant strains.


Assuntos
Doxiciclina , Ureaplasma urealyticum , Criança , Humanos , Feminino , Adulto Jovem , Adulto , Ureaplasma urealyticum/genética , Claritromicina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genitália Feminina , Resistência a Medicamentos
13.
Rev Bras Parasitol Vet ; 33(1): e019023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511818

RESUMO

The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Doenças dos Ovinos , Animais , Ovinos , Resistência a Medicamentos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/epidemiologia , Contagem de Ovos de Parasitas/veterinária , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Fezes/parasitologia
14.
Ann Clin Microbiol Antimicrob ; 23(1): 23, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449006

RESUMO

BACKGROUND: The aim of this study was to investigate the clinical features of Nocardia infections, antibiotic resistance profile, choice of antibiotics and treatment outcome, among others. In addition, the study compared the clinical and microbiological characteristics of nocardiosis in bronchiectasis patients and non-bronchiectasis patients. METHODS: Detailed clinical data were collected from the medical records of 71 non-duplicate nocardiosis patients from 2017 to 2023 at a tertiary hospital in Zhengzhou, China. Nocardia isolates were identified to the species level using MALDI-TOF MS and 16S rRNA PCR sequencing. Clinical data were collected from medical records, and drug susceptibility was determined using the broth microdilution method. RESULTS: Of the 71 cases of nocardiosis, 70 (98.6%) were diagnosed as pulmonary infections with common underlying diseases including bronchiectasis, tuberculosis, diabetes mellitus and chronic obstructive pulmonary disease (COPD). Thirteen different strains were found in 71 isolates, the most common of which were N. farcinica (26.8%) and N. cyriacigeorgica (18.3%). All Nocardia strains were 100% susceptible to both TMP-SMX and linezolid, and different Nocardia species showed different patterns of drug susceptibility in vitro. Pulmonary nocardiosis is prone to comorbidities such as bronchiectasis, diabetes mellitus, COPD, etc., and Nocardia is also frequently accompanied by co-infection of the body with pathogens such as Mycobacterium and Aspergillus spp. Sixty-one patients underwent a detailed treatment regimen, of whom 32 (52.5%) received single or multi-drug therapy based on TMP-SMX. Bronchiectasis was associated with a higher frequency of Nocardia infections, and there were significant differences between the bronchiectasis and non-bronchiectasis groups in terms of age distribution, clinical characteristics, identification of Nocardia species, and antibiotic susceptibility (P < 0.05). CONCLUSIONS: Our study contributes to the understanding of the species diversity of Nocardia isolates in Henan, China, and the clinical characteristics of patients with pulmonary nocardiosis infections. Clinical and microbiologic differences between patients with and without bronchiectasis. These findings will contribute to the early diagnosis and treatment of patients.


Assuntos
Bronquiectasia , Diabetes Mellitus , Nocardiose , Nocardia , Doença Pulmonar Obstrutiva Crônica , Humanos , Nocardia/genética , RNA Ribossômico 16S/genética , Combinação Trimetoprima e Sulfametoxazol , Nocardiose/tratamento farmacológico , China , Bronquiectasia/tratamento farmacológico , Resistência a Medicamentos
15.
ACS Infect Dis ; 10(4): 1174-1184, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472113

RESUMO

The appearance and spread of mutations that cause drug resistance in rapidly evolving diseases, including infections by the SARS-CoV-2 virus, are major concerns for human health. Many drugs target enzymes, and resistance-conferring mutations impact inhibitor binding or enzyme activity. Nirmatrelvir, the most widely used inhibitor currently used to treat SARS-CoV-2 infections, targets the main protease (Mpro) preventing it from processing the viral polyprotein into active subunits. Our previous work systematically analyzed resistance mutations in Mpro that reduce binding to inhibitors; here, we investigate mutations that affect enzyme function. Hyperactive mutations that increase Mpro activity can contribute to drug resistance but have not been thoroughly studied. To explore how hyperactive mutations contribute to resistance, we comprehensively assessed how all possible individual mutations in Mpro affect enzyme function using a mutational scanning approach with a fluorescence resonance energy transfer (FRET)-based yeast readout. We identified hundreds of mutations that significantly increased the Mpro activity. Hyperactive mutations occurred both proximal and distal to the active site, consistent with protein stability and/or dynamics impacting activity. Hyperactive mutations were observed 3 times more than mutations which reduced apparent binding to nirmatrelvir in recent studies of laboratory-grown viruses selected for drug resistance. Hyperactive mutations were also about three times more prevalent than nirmatrelvir binding mutations in sequenced isolates from circulating SARS-CoV-2. Our findings indicate that hyperactive mutations are likely to contribute to the natural evolution of drug resistance in Mpro and provide a comprehensive list for future surveillance efforts.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutação , Lactamas , Leucina , Nitrilas , Saccharomyces cerevisiae , Resistência a Medicamentos
16.
BMC Genomics ; 25(1): 269, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468205

RESUMO

BACKGROUND: Polymorphisms of Plasmodium falciparum chloroquine resistance transporter (pfcrt), Plasmodium falciparum multi-drug resistance 1 (pfmdr1) and Plasmodium falciparum kelch 13-propeller (pfk13) genes are accepted as valid molecular markers of quinoline antimalarials and artemisinins. This study investigated the distribution patterns of these genes in P. falciparum isolates from the areas along the Thai-Myanmar border during the two different periods of antimalarial usage in Thailand. RESULTS: Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were used to detect pfcrt mutations at codons 76, 220, 271, 326, 356, and 371 as well as pfmdr1 mutation at codon 86. The prevalence of pfcrt mutations was markedly high (96.4-99.7%) in samples collected during both periods. The proportions of mutant genotypes (number of mutant/total isolate) at codons 76, 220, 271, 326, 356 and 371 in the isolates collected during 1993-1998 (period 1) compared with 2002-2008 (period 2) were 97.9% (137/140) vs. 97.1% (401/413), 97.9% (140/143) vs. 98.8% (171/173), 97.2% (139/143) vs. 97.1% (333/343), 98.6% (140/142) vs. 99.7% (385/386), 96.4% (134/139) vs. 98.2% (378/385) and 97.8% (136/139) vs. 98.9% (375/379), respectively. Most isolates carried pfmdr1 wild-type at codon 86, with a significant difference in proportions genotypes (number of wild type/total sample) in samples collected during period 1 [92.9% (130/140)] compared with period 2 [96.9% (379/391)]. Investigation of pfmdr1 copy number was performed by real-time PCR. The proportions of isolates carried 1, 2, 3 and 4 or more than 4 copies of pfmdr1 (number of isolates carried correspondent copy number/total isolate) were significantly different between the two sample collecting periods (65.7% (90/137) vs. 87.8% (390/444), 18.2% (25/137) vs. 6.3%(28/444), 5.1% (7/137) vs. 1.4% (6/444) and 11.0% (15/137) vs. 4.5% (20/444), for period 1 vs. period 2, respectively). No pfk13 mutation was detected by nested PCR and nucleotide sequencing in all samples with successful analysis (n = 68). CONCLUSIONS: The persistence of pfcrt mutations and pfmdr1 wild-types at codon 86, along with gene amplification in P. falciparum, contributes to the continued resistance of chloroquine and mefloquine in P. falciparum isolates in the study area. Regular surveillance of antimalarial drug resistance in P. falciparum, incorporating relevant molecular markers and treatment efficacy assessments, should be conducted.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Tailândia , Mianmar , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Resistência a Medicamentos/genética , Reação em Cadeia da Polimerase em Tempo Real , Biomarcadores , Proteínas de Protozoários/genética , Códon
17.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473989

RESUMO

The vacuolar proton-translocating ATPase (V-ATPase) is a transmembrane multi-protein complex fundamental in maintaining a normal intracellular pH. In the tumoral contest, its role is crucial since the metabolism underlying carcinogenesis is mainly based on anaerobic glycolytic reactions. Moreover, neoplastic cells use the V-ATPase to extrude chemotherapy drugs into the extra-cellular compartment as a drug resistance mechanism. In glioblastoma (GBM), the most malignant and incurable primary brain tumor, the expression of this pump is upregulated, making it a new possible therapeutic target. In this work, the bafilomycin A1-induced inhibition of V-ATPase in patient-derived glioma stem cell (GSC) lines was evaluated together with temozolomide, the first-line therapy against GBM. In contrast with previous published data, the proposed treatment did not overcome resistance to the standard therapy. In addition, our data showed that nanomolar dosages of bafilomycin A1 led to the blockage of the autophagy process and cellular necrosis, making the drug unusable in models which are more complex. Nevertheless, the increased expression of V-ATPase following bafilomycin A1 suggests a critical role of the proton pump in GBM stem components, encouraging the search for novel strategies to limit its activity in order to circumvent resistance to conventional therapy.


Assuntos
Glioblastoma , Glioma , Macrolídeos , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Glioma/patologia , Glioblastoma/patologia , Resistência a Medicamentos , Fenótipo , Células-Tronco Neoplásicas/metabolismo
18.
Adv Drug Deliv Rev ; 207: 115239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437916

RESUMO

The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.


Assuntos
Portadores de Fármacos , Nanopartículas , Humanos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Resistência a Medicamentos
19.
Nat Commun ; 15(1): 2458, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503736

RESUMO

Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.


Assuntos
Mieloma Múltiplo , Humanos , Osso e Ossos/patologia , Doença Crônica , Resistência a Medicamentos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
20.
PeerJ ; 12: e17082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529307

RESUMO

Background: Peroxisome proliferator-activated receptors (PPARs) exert multiple functions in the initiation and progression of stomach adenocarcinomas (STAD). This study analyzed the relationship between PPARs and the immune status, molecular mutations, and drug therapy in STAD. Methods: The expression profiles of three PPAR genes (PPARA, PPARD and PPARG) were downloaded from The Cancer Genome Atlas (TCGA) dataset to analyze their expression patterns across pan-cancer. The associations between PPARs and clinicopathologic features, prognosis, tumor microenvironment, genome mutation and drug sensitivity were also explored. Co-expression between two PPAR genes was calculated using Pearson analysis. Regulatory pathways of PPARs were scored using gene set variation analysis (GSVA) package. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, Cell Counting Kit-8 (CCK-8) assay and transwell assay were conducted to analyze the expression and function of the PPAR genes in STAD cell lines (AGS and SGC7901 cells). Results: PPARA, PPARD and PPARG were more abnormally expressed in STAD samples and cell lines when compared to most of 32 type cancers in TCGA. In STAD, the expression of PPARD was higher in Grade 3+4 and male patients, while that of PPARG was higher in patient with Grade 3+4 and age > 60. Patients in high-PPARA expression group tended to have longer survival time. Co-expression analysis revealed 6 genes significantly correlated with the three PPAR genes in STAD. Single-sample GSEA (ssGSEA) showed that the three PPAR genes were enriched in 23 pathways, including MITOTIC_SPINDLE, MYC_TARGETS_V1, E2F_TARGETS and were closely correlated with immune cells, including NK_cells_resting, T_cells_CD4_memory_resting, and macrophages_M0. Immune checkpoint genes (CD274, SIGLEC15) were abnormally expressed between high-PPAR expression and low-PPAR expression groups. TTN, MUC16, FAT2 and ANK3 genes had a high mutation frequency in both high-PPARA/PPARG and low-PPARA/PPARG expression group. Fourteen and two PPARA/PPARD drugs were identified to be able to effectively treat patients in high-PPARA/PPARG and low-PPARA/PPARG expression groups, respectively. We also found that the chemotherapy drug Vinorelbine was positively correlated with the three PPAR genes, showing the potential of Vinorelbine to serve as a treatment drug for STAD. Furthermore, cell experiments demonstrated that PPARG had higher expression in AGS and SGC7901 cells, and that inhibiting PPARG suppressed the viability, migration and invasion of AGS and SGC7901 cells. Conclusions: The current results confirmed that the three PPAR genes (PPARA, PPARD and PPARG) affected STAD development through mediating immune microenvironment and genome mutation.


Assuntos
Adenocarcinoma , PPAR delta , Humanos , Masculino , PPAR gama/genética , Vinorelbina , PPAR alfa/genética , PPAR delta/genética , Adenocarcinoma/tratamento farmacológico , Resistência a Medicamentos , Estômago , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...