Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.536
Filtrar
2.
J Clin Invest ; 134(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487999

RESUMO

Allergic asthma generally starts during early life and is linked to substantial tissue remodeling and lung dysfunction. Although angiogenesis is a feature of the disrupted airway, the impact of allergic asthma on the pulmonary microcirculation during early life is unknown. Here, using quantitative imaging in precision-cut lung slices (PCLSs), we report that exposure of neonatal mice to house dust mite (HDM) extract disrupts endothelial cell/pericyte interactions in adventitial areas. Central to the blood vessel structure, the loss of pericyte coverage was driven by mast cell (MC) proteases, such as tryptase, that can induce pericyte retraction and loss of the critical adhesion molecule N-cadherin. Furthermore, spatial transcriptomics of pediatric asthmatic endobronchial biopsies suggests intense vascular stress and remodeling linked with increased expression of MC activation pathways in regions enriched in blood vessels. These data provide previously unappreciated insights into the pathophysiology of allergic asthma with potential long-term vascular defects.


Assuntos
Asma , Mastócitos , Humanos , Criança , Animais , Camundongos , Mastócitos/patologia , Pericitos/metabolismo , Células Endoteliais/metabolismo , Asma/patologia , Pulmão/patologia , Alérgenos , Pyroglyphidae , Modelos Animais de Doenças
3.
Stem Cell Res Ther ; 15(1): 59, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433209

RESUMO

BACKGROUND: Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS: We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS: iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS: iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pericitos , Humanos , Becaplermina/farmacologia , Endotelina-1/farmacologia , Adenosina , Proliferação de Células
5.
Diabetes Metab Res Rev ; 40(3): e3792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517704

RESUMO

AIMS: Sulfatide is a chaperone for insulin manufacturing in beta cells. Here we explore whether the blood glucose values normally could be associated with this sphingolipid and especially two of its building enzymes CERS2 and CERS6. Both T1D and T2D have low blood sulfatide levels, and insulin resistance on beta cells at clinical diagnosis. Furthermore, we examined islet pericytes for sulfatide, and beta-cell receptors for GLP-1, both of which are related to the insulin production. MATERIALS AND METHODS: We examined mRNA levels in islets from the DiViD and nPOD studies, performed genetic association analyses, and histologically investigated pericytes in the islets for sulfatide. RESULTS: Polymorphisms of the gene encoding the CERS6 enzyme responsible for synthesising dihydroceramide, a precursor to sulfatide, are associated with random blood glucose values in non-diabetic persons. This fits well with our finding of sulfatide in pericytes in the islets, which regulates the capillary blood flow in the islets of Langerhans, which is important for oxygen supply to insulin production. In the islets of newly diagnosed T1D patients, we observed low levels of GLP-1 receptors; this may explain the insulin resistance in their beta cells and their low insulin production. In T2D patients, we identified associated polymorphisms in both CERS2 and CERS6. CONCLUSIONS: Here, we describe several polymorphisms in sulfatide enzymes related to blood glucose levels and HbA1c in non-diabetic individuals. Islet pericytes from such persons contain sulfatide. Furthermore, low insulin secretion in newly diagnosed T1D may be explained by beta-cell insulin resistance due to low levels of GLP-1 receptors.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ilhotas Pancreáticas , Humanos , Glicemia , Esfingolipídeos , Resistência à Insulina/genética , Pericitos , Sulfoglicoesfingolipídeos , Insulina , Insulina Regular Humana , Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon , Glucose
6.
Chem Biol Interact ; 393: 110939, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490643

RESUMO

Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.


Assuntos
Cisplatino , Ototoxicidade , Camundongos , Animais , Masculino , Cisplatino/farmacologia , Cisplatino/metabolismo , Pericitos/metabolismo , Quercetina/farmacologia , Quercetina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Ototoxicidade/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Apoptose
9.
EMBO J ; 43(8): 1519-1544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528180

RESUMO

Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.


Assuntos
Neoplasias , Pericitos , Humanos , Pericitos/patologia , Pericitos/fisiologia , Guanilil Ciclase Solúvel , Células Endoteliais/fisiologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias/genética , Neoplasias/patologia , Guanilato Ciclase , Microambiente Tumoral
10.
J Histochem Cytochem ; 72(3): 131-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454609

RESUMO

Diabetes is not only an endocrine but also a vascular disease. Vascular defects are usually seen as consequence of diabetes. However, at the level of the pancreatic islet, vascular alterations have been described before symptom onset. Importantly, the cellular and molecular mechanisms underlying these early vascular defects have not been identified, neither how these could impact the function of islet endocrine cells. In this review, we will discuss the possibility that dysfunction of the mural cells of the microvasculature-known as pericytes-underlies vascular defects observed in islets in pre-symptomatic stages. Pericytes are crucial for vascular homeostasis throughout the body, but their physiological and pathophysiological functions in islets have only recently started to be explored. A previous study had already raised interest in the "microvascular" approach to this disease. With our increased understanding of the crucial role of the islet microvasculature for glucose homeostasis, here we will revisit the vascular aspects of islet function and how their deregulation could contribute to diabetes pathogenesis, focusing in particular on type 1 diabetes (T1D).


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Pericitos , Ilhotas Pancreáticas/irrigação sanguínea , Diabetes Mellitus Tipo 1/patologia , Microvasos/patologia
11.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493151

RESUMO

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , 60489 , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células
12.
Genes (Basel) ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540357

RESUMO

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Assuntos
Perfilação da Expressão Gênica , Pulmão , Humanos , Camundongos , Animais , Pulmão/metabolismo , Transcriptoma/genética , Fenótipo , Pericitos , Mamíferos/genética
13.
Alzheimers Res Ther ; 16(1): 56, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475929

RESUMO

BACKGROUND: Although abnormal accumulation of amyloid beta (Aß) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid ß induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aß deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS: Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aß oligomer stereotactic injection model was established to explain the relationship between Aß and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS: Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aß-injected model, suggesting a direct relationship between Aß and vascular dysfunction. Pericytes showed impaired features including low PDGFRß expression and increased pro-inflammatory chemokines secretion under the administration of Aß in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS: Our results provide new insights into the pathogenic mechanism underlying Aß-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Transtornos Cerebrovasculares , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Pericitos/patologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Doença de Alzheimer/patologia , Transtornos Cerebrovasculares/complicações
14.
Methods Mol Biol ; 2783: 25-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478224

RESUMO

Perivascular cells represent an in vivo counterpart of mesenchymal stromal/stem cells that populate the outer layer of blood vessels. Pericytes in capillaries and microvessels and adventitial cells of large arteries and veins give rise to stem/progenitor cells when isolated and cultured in vitro. These cells have been considered candidate cell types for cell therapy. Adipose tissue, being highly vascularized, dispensable, and easily accessed, is a viable option to obtain perivascular cells for use in research and in clinical trials. Here, we describe our established protocol to extract perivascular cells from human fat through fluorescence-activated cell sorting, which allows for the isolation of defined populations of progenitor cells with high reproducibility.


Assuntos
Células-Tronco Mesenquimais , Humanos , Citometria de Fluxo , Reprodutibilidade dos Testes , Células-Tronco Mesenquimais/metabolismo , Pericitos/metabolismo , Tecido Adiposo , Diferenciação Celular
15.
Mol Med ; 30(1): 21, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317079

RESUMO

BACKGROUND: Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS: Tamoxifen-inducible systemic conditional PDGF receptor ß knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor ß knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS: Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS: PDGF receptor ß signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.


Assuntos
Pericitos , Fator de Crescimento Derivado de Plaquetas , Camundongos , Humanos , Animais , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Pericitos/metabolismo , Becaplermina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Meios de Cultivo Condicionados/metabolismo , Lipopolissacarídeos , Transdução de Sinais , Inflamação/metabolismo , Camundongos Knockout , Obesidade/metabolismo , Hipotálamo , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo
16.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339125

RESUMO

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Assuntos
Cardiomiopatias , Oxirredutases Intramoleculares , Lipocalinas , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Mastócitos/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miocárdio/metabolismo , Pericitos/metabolismo
17.
Acta Neuropathol Commun ; 12(1): 29, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360798

RESUMO

Neurovascular unit mural cells called 'pericytes' maintain the blood-brain barrier and local cerebral blood flow. Pathological changes in the hippocampus predispose to cognitive impairment and dementia. The role of hippocampal pericytes in dementia is largely unknown. We investigated hippocampal pericytes in 90 post-mortem brains from post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD), and AD-VaD (Mixed) subjects, and post-stroke non-demented survivors as well as similar age controls. We used collagen IV immunohistochemistry to determine pericyte densities and a mouse model of VaD to validate the effects of chronic cerebral hypoperfusion. Despite increased trends in hippocampal microvascular densities across all dementias, mean pericyte densities were reduced by ~25-40% in PSD, VaD and AD subjects compared to those in controls, which calculated to 14.1 ± 0.7 per mm capillary length, specifically in the cornu ammonis (CA) 1 region (P = 0.01). In mice with chronic bilateral carotid artery occlusion, hippocampal pericyte loss was ~60% relative to controls (P < 0.001). Pericyte densities were correlated with CA1 volumes (r = 0.54, P = 0.006) but not in any other sub-region. However, mice subjected to the full-time environmental enrichment (EE) paradigm showed remarkable attenuation of hippocampal CA1 pericyte loss in tandem with CA1 atrophy. Our results suggest loss of hippocampal microvascular pericytes across common dementias is explained by a vascular aetiology, whilst the EE paradigm offers significant protection.


Assuntos
Doença de Alzheimer , Isquemia Encefálica , Demência Vascular , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Demência Vascular/patologia , Pericitos/patologia , Hipocampo/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Isquemia Encefálica/patologia
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338969

RESUMO

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Assuntos
Barreira Hematoencefálica , Epilepsia do Lobo Temporal , Epilepsia , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Estado Epiléptico , Animais , Humanos , Ratos , Barreira Hematoencefálica/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Pericitos/metabolismo , Pilocarpina/efeitos adversos , Ratos Sprague-Dawley , Estado Epiléptico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339053

RESUMO

The blood-retinal barrier (BRB) is strongly compromised in diabetic retinopathy (DR) due to the detachment of pericytes (PCs) from retinal microvessels, resulting in increased permeability and impairment of the BRB. Western blots, immunofluorescence and ELISA were performed on adipose mesenchymal stem cells (ASCs) and pericyte-like (P)-ASCs by co-cultured human retinal endothelial cells (HRECs) under hyperglycemic conditions (HG), as a model of DR. Our results demonstrated that: (a) platelet-derived growth factor receptor (PDGFR) and its activated form were more highly expressed in monocultured P-ASCs than in ASCs, and this expression increased when co-cultured with HRECs under high glucose conditions (HG); (b) the transcription factor Nrf2 was more expressed in the cytoplasmic fraction of ASCs and in the P-ASC nuclear fraction, under normal glucose and, even more, under HG conditions; (c) cytosolic phospholipase A2 activity and prostaglandin E2 release, stimulated by HG, were significantly reduced in P-ASCs co-cultured with HRECs; (d) HO-1 protein content was significantly higher in HG-P-ASCs/HRECs than P-ASCs/HRECs; and (e) VEGF-A levels in media from HG-co-cultures were reduced in P-ASCs/HRECs with respect to ASCs/HRECs. The data obtained highlighted the potential of autologous differentiated ASCs in future clinical applications based on cell therapy to counteract the damage induced by DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Células-Tronco Mesenquimais , Humanos , Retinopatia Diabética/terapia , Retinopatia Diabética/metabolismo , Pericitos/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glucose/metabolismo , Células Cultivadas , Diabetes Mellitus/metabolismo
20.
Discov Med ; 36(181): 308-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409836

RESUMO

BACKGROUND: Pericytes (PCs), the critical components of vessels, are implicated in wound repair. This study aimed to explore the roles of PCs in wound healing and angiogenesis. METHODS: Skin PCs and human dermal microvascular endothelial cells (HDMECs) were isolated from patients' upper eyelid skin. Immunofluorescence staining was used to characterize the morphology of PCs. Tube formation and transwell chemotaxis assays were performed to explore PC's tube-forming capability and chemotaxis. Finally, we investigated the effects of PCs and endothelial cells on wound repair using skin wound of a rat model. RESULTS: Skin PCs exhibited a double-protrusion structure and characteristic antigen expression of neural/glial antigen 2 (NG2)+/platelet-derived growth factor receptor-ß (PDGFR-ß)+/alpha-smooth muscle actin (α-SMA)+/CD31-. Skin PCs could directly form lumen-like structures in a two dimensional (2D) culture environment, and mild hypoxia and starvation promoted the lumen-like structure formation. Furthermore, skin PCs quickly formed more stable lumen-like structures than HDMECs in matrigel, and they recruited HDMECs in a three dimensional (3D) culture environment. Transwell chemotaxis assay showed that PCs and HDMECs were chemotactic to each other. PCs could develop lumen-like structures in the skin wounds of rat models. The number of PCs mounted in wounded skin was compared to normal skin. The ratio of PCs to endothelial cells gradually increased after skin injury and reached its maximum on the 3rd day. CONCLUSIONS: Skin PCs have an excellent tube-forming capability and chemotaxis to endothelial cells. PCs might promote wound repair by recruiting endothelial cells.


Assuntos
Células Endoteliais , Pericitos , Humanos , Ratos , Animais , Pericitos/metabolismo , Quimiotaxia , Pele , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...