Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.599
Filtrar
1.
Stem Cell Res Ther ; 15(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443990

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported. METHODS: Flow cytometric analysis, RNA sequencing and differentiation ability were applied to detect the characteristics of stromal cells from 3D human brain organoids. Human umbilical cord blood CD34+ (UCB-CD34+) cells were cultured in different coculture conditions composed of stromal cells and umbilical cord MSCs (UC-MSCs) with or without a cytokine cocktail. The hematopoietic stroma capacity of stromal cells was tested in vitro with the LTC-IC assay and in vivo by cotransplantation of cord blood nucleated cells and stroma cells into immunodeficient mice. RNA and proteomic sequencing were used to detect the role of MSCs on HSPCs. RESULTS: The stromal cells, derived from both H1-hESCs and human induced pluripotent stem cells forebrain organoids, were capable of differentiating into the classical mesenchymal-derived cells (osteoblasts, chondrocytes, and adipocytes). These cells expressed MSC markers, thus named pluripotent stem cell-derived MSCs (pMSCs). The pMSCs showed neural crest origin with CD271 expression in the early stage. When human UCB-CD34+ HSPCs were cocultured on UC-MSCs or pMSCs, the latter resulted in robust expansion of UCB-CD34+ HSPCs in long-term culture and efficient maintenance of their transplantability. Comparison by RNA sequencing indicated that coculture of human UCB-CD34+ HSPCs with pMSCs provided an improved microenvironment for HSC maintenance. The pMSCs highly expressed the Wnt signaling inhibitors SFRP1 and SFRP2, indicating that they may help to modulate the cell cycle to promote the maintenance of UCB-CD34+ HSPCs by antagonizing Wnt activation. CONCLUSIONS: A novel method for harvesting MSCs with neural crest origin from 3D human brain organoids under serum-free culture conditions was reported. We demonstrate that the pMSCs support human UCB-HSPC expansion in vitro in a long-term culture and the maintenance of their transplantable ability. RNA and proteomic sequencing indicated that pMSCs provided an improved microenvironment for HSC maintenance via mechanisms involving cell-cell contact and secreted factors and suppression of Wnt signaling. This represents a novel method for large-scale production of MSCs of neural crest origin and provides a potential approach for development of human hematopoietic stromal cell therapy for treatment of dyshematopoiesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Proteômica , Células Estromais , Antígenos CD34 , Organoides , Prosencéfalo , RNA
2.
J Alzheimers Dis ; 98(1): 301-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427475

RESUMO

Background: Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective: In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods: Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100µM suramin for 72 h, followed by assessments for amyloid-ß, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results: Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions: These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/patologia , Suramina/farmacologia , Suramina/metabolismo , Proteínas tau/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Prosencéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Cloroquina/metabolismo , Cloroquina/farmacologia
3.
PLoS One ; 19(3): e0300479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512887

RESUMO

Night-migrating songbirds utilize the Earth's magnetic field to help navigate to and from their breeding sites each year. A region of the avian forebrain called Cluster N has been shown to be activated during night migratory behavior and it has been implicated in processing geomagnetic information. Previous studies with night-migratory European songbirds have shown that neuronal activity at Cluster N is higher at night than during the day. Comparable work in North American migrants has only been performed in one species of swallows, so extension of examination for Cluster N in other migratory birds is needed. In addition, it is unclear if Cluster N activation is lateralized and the full extent of its boundaries in the forebrain have yet to be described. We used sensory-driven gene expression based on ZENK and the Swainson's thrush, a night-migratory North American songbird, to fill these knowledge gaps. We found elevated levels of gene expression in night- vs. day-active thrushes and no evidence for lateralization in this region. We further examined the anatomical extent of neural activation in the forebrain using 3D reconstruction topology. Our findings demonstrate that Swainson's thrushes possess an extensive bilateral night-activated Cluster N region in the forebrain similar to other European avian species, suggesting that Cluster N is highly conserved in nocturnal migrants.


Assuntos
Aves Canoras , Animais , Aves Canoras/genética , Prosencéfalo , Neurônios , América do Norte , Migração Animal/fisiologia
4.
J Comp Neurol ; 532(3): e25601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450738

RESUMO

Vocalization of tetrapods evolved as an air-driven mechanism. Thus, it is conceivable that the underlaying neural network might have evolved from more ancient respiratory circuits and be made up of homologous components that generate breathing rhythms across vertebrates. In this context, the extant species of stem anurans provide an opportunity to analyze the connection of the neural circuits of lung ventilation and vocalization. Here, we analyzed the fictive lung ventilation and vocalization behavior of isolated brains of the Chinese fire-bellied toad Bombina orientalis during their mating season by nerve root recordings. We discovered significant differences in durations of activation of male brains after stimulation of the statoacoustic nerve or vocalization-relevant forebrain structures in comparison to female brains. The increased durations of motor nerve activities in male brains can be interpreted as fictive calling, as male's advertisement calls in vivo had the same general pattern compared to lung ventilation, but longer duration periods. Female brains react to the corresponding stimulations with the same shorter activity pattern that occurred spontaneously in both female and male brains and thus can be interpreted as fictive lung ventilations. These results support the hypothesis that vocal circuits evolved from ancient respiration networks in the anuran caudal hindbrain. Moreover, we could show that the terrestrial stem archeobatrachian Bombina spec. is an appropriate model to study the function and evolution of the shared network of lung ventilation and vocal generation.


Assuntos
Nervo Coclear , Prosencéfalo , Feminino , Masculino , Animais , Anuros , Comunicação Celular , Reprodução
5.
Proc Natl Acad Sci U S A ; 121(11): e2308401121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446849

RESUMO

Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.


Assuntos
Genes Homeobox , Neurônios , Humanos , Cromatina , Neurotransmissores , Prosencéfalo
6.
Sci Rep ; 14(1): 3936, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365907

RESUMO

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Humanos , Organoides , Prosencéfalo , Elementos Facilitadores Genéticos
7.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355299

RESUMO

A current hypothesis to explain the limited recovery following brain and spinal cord trauma stems from the dogma that neurons in the mammalian central nervous system lack the ability to regenerate their axons after injury. Serotonin (5-HT) neurons in the adult brain are a notable exception in that they can slowly regrow their axons following chemical or mechanical lesions. This process of regrowth occurs without intervention over several months and results in anatomical recovery that approximates the preinjured state. During development, serotonin is a trophic factor, playing a role in both cell survival and axon growth. Additionally, some studies have shown that stroke patients treated after injury with serotonin selective reuptake inhibitors (SSRIs) appeared to have improved recovery. To test the hypothesis that serotonin can influence the regrowth of 5-HT axons, mice received a high dose of para-chloroamphetamine (PCA) to induce widespread retrograde degeneration of 5-HT axons. Then, after a short rest period to avoid any interaction with the acute injury phase, SSRIs were administered daily for 6 or 10 weeks. Using immunohistochemistry in 5-HT transporter-GFP BAC transgenic mice, we determined that while PCA led to a rapid initial decrease in total 5-HT axon length in the somatosensory cortex, visual cortex, or area CA1 of the hippocampus, treatment with either fluoxetine or sertraline (two different SSRIs) did not affect the recovery of axon length. These results suggest that chronic SSRI treatment does not affect the regrowth of 5-HT axons and argue against SSRIs as a potential therapy following brain injury.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Humanos , Adulto , Camundongos , Animais , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Anfetamina , Fluoxetina/farmacologia , Axônios/fisiologia , Prosencéfalo , Camundongos Transgênicos , Mamíferos
8.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397089

RESUMO

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.


Assuntos
Lampreias , Prosencéfalo , Animais , Lampreias/genética , Xenopus laevis/genética , Via de Sinalização Wnt , Genoma , Filogenia
9.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377003

RESUMO

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Assuntos
Acetilcolina , Córtex Entorrinal , Animais , Acetilcolina/farmacologia , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
10.
Elife ; 122024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345922

RESUMO

The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.


Social behaviour is important for many animals, especially humans. It governs interactions between individuals and groups. One of the regions involved in social behaviour is the cerebellum, a part of the brain commonly known for controlling movement. It is likely that the cerebellum connects and influences other socially important areas in the brain, such as the anterior cingulate cortex. How exactly these regions communicate during social interaction is not well understood. One of the challenges studying communication between areas in the brain has been a lack of tools that can measure neural activity in multiple regions at once. To address this problem, Hur et al. developed a device called the E-Scope. The E-Scope can measure brain activity from two places in the brain at the same time. It can simultaneously record imaging and electrophysiological data of the different neurons. It is also small enough to be attached to animals without inhibiting their movements. Hur et al. tested the E-Scope by studying neurons in two regions of the cerebellum, called the right Crus I and the dentate nucleus, and in the anterior cingulate cortex during social interactions in mice. The E-Scope recorded from the animals as they interacted with other mice and compared them with those in mice that interacted with objects. During social interactions, Purkinje cells in the right Crus I were mostly less active, while neurons in the dentate nucleus and anterior cingulate cortex became overall more active. These results suggest that communication between the cerebellum and the anterior cingulate cortex is an important part of how the mouse brain coordinates social behaviour. The study of Hur et al. deepens our understanding of the function of the cerebellum in social behaviour. The E-Scope is an openly available tool to allow researchers to record communication between remote brain areas in small animals. This could be important to researchers trying to understand conditions like autism, which can involve difficulties in social interaction, or injuries to the cerebellum resulting in personality changes.


Assuntos
Cálcio , Giro do Cíngulo , Camundongos , Animais , Cerebelo , Comportamento Social , Prosencéfalo
11.
PLoS One ; 19(1): e0297166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285689

RESUMO

Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.


Assuntos
Fixação Psicológica Instintiva , NADH Desidrogenase , Quinases da Família src , Animais , Galinhas , Fixação Psicológica Instintiva/fisiologia , Aprendizagem/fisiologia , Prosencéfalo/fisiologia , Tirosina , Quinases da Família src/metabolismo
12.
PLoS One ; 19(1): e0296790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227598

RESUMO

SpinoCerebellar Ataxia type 7 (SCA7) is an inherited disorder caused by CAG triplet repeats encoding polyglutamine expansion in the ATXN7 protein, which is part of the transcriptional coactivator complex SAGA. The mutation primarily causes neurodegeneration in the cerebellum and retina, as well as several forebrain structures. The SCA7140Q/5Q knock-in mouse model recapitulates key disease features, including loss of vision and motor performance. To characterize the temporal progression of brain degeneration of this model, we performed a longitudinal study spanning from early to late symptomatic stages using high-resolution magnetic resonance imaging (MRI) and in vivo 1H-magnetic resonance spectroscopy (1H-MRS). Compared to wild-type mouse littermates, MRI analysis of SCA7 mice shows progressive atrophy of defined brain structures, with the striatum, thalamus and cortex being the first and most severely affected. The volume loss of these structures coincided with increased motor impairments in SCA7 mice, suggesting an alteration of the sensory-motor network, as observed in SCA7 patients. MRI also reveals atrophy of the hippocampus and anterior commissure at mid-symptomatic stage and the midbrain and brain stem at late stage. 1H-MRS of hippocampus, a brain region previously shown to be dysfunctional in patients, reveals early and progressive metabolic alterations in SCA7 mice. Interestingly, abnormal glutamine accumulation precedes the hippocampal atrophy and the reduction in myo-inositol and total N-acetyl-aspartate concentrations, two markers of glial and neuronal damage, respectively. Together, our results indicate that non-cerebellar alterations and glial and neuronal metabolic impairments may play a crucial role in the development of SCA7 mouse pathology, particularly at early stages of the disease. Degenerative features of forebrain structures in SCA7 mice correspond to current observations made in patients. Our study thus provides potential biomarkers that could be used for the evaluation of future therapeutic trials using the SCA7140Q/5Q model.


Assuntos
Ataxias Espinocerebelares , Humanos , Camundongos , Animais , Estudos Longitudinais , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxina-7/genética , Imageamento por Ressonância Magnética , Prosencéfalo/metabolismo , Espectroscopia de Ressonância Magnética , Atrofia/patologia
13.
Elife ; 122024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179984

RESUMO

Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.


Assuntos
Citoesqueleto de Actina , Distroglicanas , Animais , Camundongos , Distroglicanas/genética , Axônios , Modelos Animais de Doenças , Prosencéfalo , Convulsões
14.
Brain Struct Funct ; 229(2): 403-429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193917

RESUMO

The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or familiar food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Ratos , Feminino , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Tálamo/fisiologia , Prosencéfalo , Núcleo Accumbens/fisiologia
15.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194967

RESUMO

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Assuntos
Encéfalo , Organoides , Humanos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Técnicas de Cultura de Tecidos , Células-Tronco/metabolismo , Morfogênese
16.
Commun Biol ; 7(1): 88, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216631

RESUMO

In mammals and birds, tool-using species are characterized by their relatively large telencephalon containing a higher proportion of total brain neurons compared to other species. Some teleost species in the wrasse family have evolved tool-using abilities. In this study, we compared the brains of tool-using wrasses with various teleost species. We show that in the tool-using wrasses, the telencephalon and the ventral part of the forebrain and midbrain are significantly enlarged compared to other teleost species but do not contain a larger proportion of cells. Instead, this size difference is due to large fiber tracts connecting the dorsal part of the telencephalon (pallium) to the inferior lobe, a ventral mesencephalic structure absent in amniotes. The high degree of connectivity between these structures in tool-using wrasses suggests that the inferior lobe could contribute to higher-order cognitive functions. We conclude that the evolution of non-telencephalic structures might have been key in the emergence of these cognitive functions in teleosts.


Assuntos
Comportamento de Utilização de Ferramentas , Animais , Telencéfalo , Prosencéfalo , Córtex Cerebral , Mesencéfalo , Mamíferos
17.
Proc Natl Acad Sci U S A ; 121(3): e2220532121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207077

RESUMO

MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.


Assuntos
MicroRNAs , Sono , Camundongos , Animais , Sono/fisiologia , Privação do Sono/genética , Eletroencefalografia , Vigília/fisiologia , Prosencéfalo , MicroRNAs/genética , MicroRNAs/farmacologia
18.
Sci Rep ; 14(1): 2155, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272959

RESUMO

In animal communication, functionally referential alarm calls elicit the same behavioral responses as their referents, despite their typically distinct bioacoustic traits. Yet the auditory forebrain in at least one songbird species, the black-capped chickadee Poecile atricapillus, responds similarly to threat calls and their referent predatory owl calls, as assessed by immediate early gene responses in the secondary auditory forebrain nuclei. Whether and where in the brain such perceptual and cognitive equivalence is processed remains to be understood in most other avian systems. Here, we studied the functional neurogenomic (non-) equivalence of acoustic threat stimuli perception by the red-winged blackbird Agelaius phoeniceus in response to the actual calls of the obligate brood parasitic brown-headed cowbird Molothrus ater and the referential anti-parasitic alarm calls of the yellow warbler Setophaga petechia, upon which the blackbird is known to eavesdrop. Using RNA-sequencing from neural tissue in the auditory lobule (primary and secondary auditory nuclei combined), in contrast to previous findings, we found significant differences in the gene expression profiles of both an immediate early gene, ZENK (egr-1), and other song-system relevant gene-products in blackbirds responding to cowbird vs. warbler calls. In turn, direct cues of threats (including conspecific intruder calls and nest-predator calls) elicited higher ZENK and other differential gene expression patterns compared to harmless heterospecific calls. These patterns are consistent with a perceptual non-equivalence in the auditory forebrain of adult male red-winged blackbirds in response to referential calls and the calls of their referents.


Assuntos
Passeriformes , Aves Canoras , Animais , Masculino , Vocalização Animal/fisiologia , Aves Canoras/fisiologia , Prosencéfalo/fisiologia , Transcriptoma , Percepção Auditiva/fisiologia
19.
J Comp Neurol ; 532(2): e25558, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047431

RESUMO

Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior. Here, the brains of chicks, Gallus gallus, were used to produce serial brain sections in either coronal, sagittal, or horizontal planes and stained with either Nissl and Gallyas silver myelin or Luxol fast blue stain and cresyl echt violet (CEV). The emerging techniques of diffusible iodine-based contrast-enhanced computed tomography (diceCT) coupled with serial histochemistry in three planes were used to generate a comprehensive three-dimensional (3D) model of the avian tectofugal visual system. This enabled the 3D reconstruction of tectofugal circuits, including the three primary neuronal projections. Specifically, major components of the system included four regions of the retina, layers of the optic tectum, subdivisions of the nucleus rotundus in the thalamus, the entopallium in the forebrain, and supplementary components connecting into or out of this major avian visual sensory system. The resulting 3D model enabled a better understanding of the structural components and connectivity of this complex system by providing a complete spatial organization that occupied several distinct brain regions. We demonstrate how pairing diceCT with traditional histochemistry is an effective means to improve the understanding of, and thereby should generate insights into, anatomical and functional properties of complicated neural pathways, and we recommend this approach to clarify enigmatic properties of these pathways.


Assuntos
Imageamento Tridimensional , Vias Visuais , Animais , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Galinhas/metabolismo , Prosencéfalo , Órgãos dos Sentidos
20.
Dev Biol ; 505: 58-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931393

RESUMO

The proneural factor Ascl1 is involved in several steps of neurogenesis, from neural progenitor maintenance to initiation of terminal differentiation and neuronal subtype specification. In neural progenitor cells, Ascl1 initiates the cell-cycle exit of progenitors, and contributes to their differentiation into mainly GABAergic neurons. Several catecholaminergic neuron groups in the forebrain of zebrafish use GABA as co-transmitter, but a potential role of the two paralogues Ascl1a and Ascl1b in their neurogenesis is not understood. Here, we show that ascl1a, ascl1b double mutant embryos develop a significantly reduced number of neurons in all GABAergic and catecholaminergic dual transmitter neuron anatomical clusters in the fore- and hindbrain, while glutamatergic catecholaminergic clusters develop normally. However, none of the affected catecholaminergic cell clusters are lost completely, suggesting an impairment in progenitor pools, or a requirement of Ascl1a/b for differentiation of a subset of neurons in each cluster. Early progenitors which are dlx2a+, fezf2 + or emx2 + are not reduced whereas late progenitors and differentiating neurons marked by the expression of dlx5a, isl1 and arxa are severely reduced in ascl1a, ascl1b double mutant embryos. This suggests that Ascl1a and Ascl1b play only a minor or no role in the maintenance of their progenitor pools, but rather contribute to the initiation of terminal differentiation of GABAergic catecholaminergic neurons.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Diferenciação Celular/fisiologia , Neurônios GABAérgicos/metabolismo , Prosencéfalo , Dopamina/metabolismo , Neurogênese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...