Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.211
Filtrar
1.
Methods Mol Biol ; 2794: 341-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630243

RESUMO

Single-cell RNA sequencing (scRNA-seq) has been widely applied in neuroscience research, enabling the investigation of cellular heterogeneity at the transcriptional level, the characterization of rare cell types, and the detailed analysis of the stochastic nature of gene expression. Isolation of single nerve cells in good health, especially from the adult rodent brain, is the most difficult and critical process for scRNA-seq. Here, we describe methods to optimize protease digestion of brain slices, which enable yield of millions of cells in good health from the adult brain.


Assuntos
Astrócitos , Neurônios , Animais , Camundongos , RNA-Seq , Encéfalo , Endopeptidases , Suspensões
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612590

RESUMO

Spinal cord injury (SCI) presents a complex challenge in neurorehabilitation, demanding innovative therapeutic strategies to facilitate functional recovery. This study investigates the effects of treadmill training on SCI recovery, emphasizing motor function enhancement, neural tissue preservation, and axonal growth. Our research, conducted on a rat model, demonstrates that controlled treadmill exercises significantly improve motor functions post-SCI, as evidenced by improved scores on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and enhanced electromyography readings. Notably, the training facilitates the preservation of spinal cord tissue, effectively reducing secondary damage and promoting the maintenance of neural fibers in the injured area. A key finding is the significant stimulation of axonal growth around the injury epicenter in trained rats, marked by increased growth-associated protein 43 (GAP43) expression. Despite these advancements, the study notes a limited impact of treadmill training on motoneuron adaptation and highlights minimal changes in the astrocyte and neuron-glial antigen 2 (NG2) response. This suggests that, while treadmill training is instrumental in functional improvements post-SCI, its influence on certain neural cell types and glial populations is constrained.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Animais , Ratos , Humanos , Neuroglia , Eletromiografia , Neurônios Motores , Traumatismos da Medula Espinal/terapia , Axônios
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612801

RESUMO

The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.


Assuntos
Astrócitos , Neocórtex , Animais , Camundongos , Receptores de N-Metil-D-Aspartato , Neurônios , Ácido Glutâmico , Canais Iônicos
4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612847

RESUMO

Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, ß-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for ß-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of ß-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or ß-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.


Assuntos
Astrócitos , Células-Tronco Neurais , Animais , Camundongos , Campos Eletromagnéticos , Projetos Piloto , Tubulina (Proteína) , Diferenciação Celular , Fenótipo
5.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607020

RESUMO

Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Humanos , NF-kappa B/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Janus Quinases/metabolismo , Gliose/complicações , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/terapia
6.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607034

RESUMO

The aim of this article is to describe sustained myopic eye growth's effect on astrocyte cellular distribution and its association with inner retinal layer thicknesses. Astrocyte density and distribution, retinal nerve fiber layer (RNFL), ganglion cell layer, and inner plexiform layer (IPL) thicknesses were assessed using immunochemistry and spectral-domain optical coherence tomography on seventeen common marmoset retinas (Callithrix jacchus): six induced with myopia from 2 to 6 months of age (6-month-old myopes), three induced with myopia from 2 to 12 months of age (12-month-old myopes), five age-matched 6-month-old controls, and three age-matched 12-month-old controls. Untreated marmoset eyes grew normally, and both RNFL and IPL thicknesses did not change with age, with astrocyte numbers correlating to RNFL and IPL thicknesses in both control age groups. Myopic marmosets did not follow this trend and, instead, exhibited decreased astrocyte density, increased GFAP+ spatial coverage, and thinner RNFL and IPL, all of which worsened over time. Myopic changes in astrocyte density, GFAP+ spatial coverage and inner retinal layer thicknesses suggest astrocyte template reorganization during myopia development and progression which increased over time. Whether or not these changes are constructive or destructive to the retina still remains to be assessed.


Assuntos
Miopia , Células Ganglionares da Retina , Animais , Astrócitos , Fibras Nervosas , Retina , Tomografia de Coerência Óptica/métodos , Callithrix
7.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607045

RESUMO

In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.


Assuntos
Neuroglia , Doenças Neuroinflamatórias , Humanos , Sistema Nervoso Central , Microglia/fisiologia , Astrócitos/fisiologia
8.
J Neuroinflammation ; 21(1): 92, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610019

RESUMO

Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.


Assuntos
Neuroglia , Doenças Neuroinflamatórias , Humanos , Animais , Camundongos , Fagócitos , Astrócitos , Modelos Animais de Doenças , Dopamina , Anti-Inflamatórios
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 21-28, 2024 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38615162

RESUMO

OBJECTIVES: The activation of astrocytes is an important process in the formation of chronic pain. This study aims to observe the activation of A1 reactive astrocytes in the medullary dorsal horn in the rat model of trigeminal neuralgia, and to explore the mechanism of central sensitization caused by A1 reactive astrocyte. METHODS: The adult male rats were randomly divided into a sham group and a chronic constriction injury of infraorbital nerve (ION-CCI) group. The facial mechanical pain threshold and thermal withdrawal latency were measured before the operation and on the 1st, 3rd, 7th, 10th, and 14th day after the operation. After pain behavior observation, the expression of glial fibrillary acidic protein (GFAP) in the medullary dorsal horn was observed by immunohistochemistry and immunofluorescence colocalization of GFAP, complement 3 (C3)/S100A10, and 4', 6-diamidino-2-phenylindole (DAPI) was analyzed. Primary astrocytes were cultured and randomly divided into a naive group and a DHK group. The DHK group was treated with 1 mmol/L of astrocyte activation inhibitor dihydrokainic acid (DHK). Fura-2/AM was used to stain the astrocytes and the calcium wave of the 2 groups under the stimulation of high potassium was recorded and compared. The expression of C3 was detected by Western blotting. RESULTS: The facial mechanical pain threshold and thermal withdrawal latency of the ION-CCI group were significantly lower than those of the sham group (both P<0.05). There were a large number of GFAP positive astrocytes in the medullary dorsal horn of the ION-CCI group. The fluorescence intensity of GFAP in the ION-CCI group was higher than that in the sham group (P<0.05). GFAP and C3/S100A10 were co-expressed in astrocytes. Compared with the sham group, the fluorescence intensity of C3 and the protein expression of C3 in the ION-CCI group were increased (both P<0.05). The expression of C3 in ION-CCI group was significantly increased (P<0.05). Compared with the naive group, the C3 protein expression was significantly decreased in the DHK group (P<0.05). The intensity of calcium fluorescence was increased after high potassium stimulation in both groups. Furthermore, the peak and increase amplitude of calcium fluorescence in the naive group were much higher than those in the DHK group (both P<0.05). CONCLUSIONS: A1 reactive astrocytes in the medullary dorsal horn of trigeminal neuralgia model rats are increased significantly, which may participate in central sensitization of trigeminal neuralgia by impacting astrocyte calcium wave.


Assuntos
Dor Crônica , Neuralgia do Trigêmeo , Masculino , Animais , Ratos , Astrócitos , Cálcio , Potássio
10.
Amino Acids ; 56(1): 31, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616233

RESUMO

Subarachnoid hemorrhage (SAH) is a form of severe acute stroke with very high mortality and disability rates. Early brain injury (EBI) and delayed cerebral ischemia (DCI) contribute to the poor prognosis of patients with SAH. Currently, some researchers have started to focus on changes in amino acid metabolism that occur in brain tissues after SAH. Taurine is a sulfur-containing amino acid that is semi-essential in animals, and it plays important roles in various processes, such as neurodevelopment, osmotic pressure regulation, and membrane stabilization. In acute stroke, such as cerebral hemorrhage, taurine plays a neuroprotective role. However, the role of taurine after subarachnoid hemorrhage has rarely been reported. In the present study, we established a mouse model of SAH. We found that taurine administration effectively improved the sensorimotor function of these mice. In addition, taurine treatment alleviated sensorimotor neuron damage and reduced the proportion of apoptotic cells. Furthermore, taurine treatment enhanced the polarization of astrocytes toward the neuroprotective phenotype while inhibiting their polarization toward the neurotoxic phenotype. This study is the first to reveal the relationship between taurine and astrocyte polarization and may provide a new strategy for SAH research and clinical treatment.


Assuntos
Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Animais , Camundongos , Hemorragia Subaracnóidea/tratamento farmacológico , Taurina/farmacologia , Astrócitos , Apoptose , Aminoácidos
12.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566081

RESUMO

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Assuntos
Metformina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Astrócitos/metabolismo , Neurônios Dopaminérgicos , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
13.
J Mol Neurosci ; 74(2): 40, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594388

RESUMO

Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.


Assuntos
Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Astrócitos/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Linhagem Celular
14.
PLoS One ; 19(4): e0300203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564643

RESUMO

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Assuntos
Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Esclerose Múltipla/patologia , Astrócitos/metabolismo , Inflamação/patologia , Fator de Necrose Tumoral alfa/metabolismo
15.
BMC Biol ; 22(1): 75, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566045

RESUMO

BACKGROUND: Trans-differentiation of human-induced pluripotent stem cells into neurons via Ngn2-induction (hiPSC-N) has become an efficient system to quickly generate neurons a likely significant advance for disease modeling and in vitro assay development. Recent single-cell interrogation of Ngn2-induced neurons, however, has revealed some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC-derived astrocytes (hiPSC-A) for the study of neuropsychiatric disorders has also been described. RESULTS: Here, we examine the homogeneity and similarity of hiPSC-N and hiPSC-A to their in vivo counterparts, the impact of different lengths of time post Ngn2 induction on hiPSC-N (15 or 21 days), and the impact of hiPSC-N/hiPSC-A co-culture. Leveraging the wealth of existing public single-cell RNA-seq (scRNA-seq) data in Ngn2-induced neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation of hiPSC-N and hiPSC-A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC-N and hiPSC-A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely approximate their in vivo counterparts when co-cultured. Gene expression data from the hiPSC-N show enrichment of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 15) in Ngn2-induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory neurons. We have assembled this new scRNA-seq data along with the public data explored here as an integrated biologist-friendly web-resource for researchers seeking to understand this system more deeply: https://nemoanalytics.org/p?l=DasEtAlNGN2&g=NES . CONCLUSIONS: While overall we support the use of the investigated cellular models for the study of neuropsychiatric disease, we also identify important limitations. We hope that this work will contribute to understanding and optimizing cellular modeling for complex brain disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cocultura , Astrócitos/fisiologia , Neurônios/fisiologia , Diferenciação Celular , Perfilação da Expressão Gênica
16.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570505

RESUMO

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Assuntos
Caenorhabditis elegans , Neuroglia , Animais , Caenorhabditis elegans/genética , Astrócitos , Fenômenos Biomecânicos , Proteostase , Matriz Extracelular/metabolismo , Junções Intercelulares
17.
Lipids Health Dis ; 23(1): 113, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643113

RESUMO

BACKGROUND: Pro-inflammatory processes triggered by the accumulation of extracellular amyloid beta (Aß) peptides are a well-described pathology in Alzheimer's disease (AD). Activated astrocytes surrounding Aß plaques contribute to inflammation by secreting proinflammatory factors. While astrocytes may phagocytize Aß and contribute to Aß clearance, reactive astrocytes may also increase Aß production. Therefore, identifying factors that can attenuate astrocyte activation and neuroinflammation and how these factors influence pro-inflammatory pathways is important for developing therapeutic and preventive strategies in AD. Here, we identify the platelet-activating factor receptor (PTAFR) pathway as a key mediator of astrocyte activation. Intriguingly, several polar lipids (PLs) have exhibited anti-inflammatory protective properties outside the central nervous system through their inhibitory effect on the PTAFR pathway. Thus, we additionally investigated whether different PLs also exert inhibitory effects on the PAF pathway in astrocytes and whether their presence influences astrocytic pro-inflammatory signaling and known AD pathologies in vitro. METHODS: PLs from salmon and yogurt were extracted using novel food-grade techniques and their fatty acid profile was determined using LC/MS. The effect of PLs on parameters such as astrocyte activation and generation of oxygen species (ROS) was assessed. Additionally, effects of the secretome of astrocytes treated with these polar lipids on aged neurons was measured. RESULTS: We show that PLs obtained from salmon and yogurt lower astrocyte activation, the generation of reactive oxygen species (ROS), and extracellular Aß accumulation. Cell health of neurons exposed to the secretome of astrocytes treated with salmon-derived PLs and Aß was less affected than those treated with astrocytes exposed to Aß only. CONCLUSION: Our results highlight a novel underlying mechanism, why consuming PL-rich foods such as fish and dairy may reduce the risk of developing dementia and associated disorders.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipídeos
19.
Nat Commun ; 15(1): 3039, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589390

RESUMO

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Diagnóstico por Imagem , Córtex Cerebral/metabolismo , Sinalização do Cálcio/fisiologia
20.
Acta Neuropathol Commun ; 12(1): 58, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610040

RESUMO

Glaucoma leads to vision loss due to retinal ganglion cell death. Astrocyte reactivity contributes to neurodegeneration. Our recent study found that lipoxin B4 (LXB4), produced by retinal astrocytes, has direct neuroprotective actions on retinal ganglion cells. In this study, we aimed to investigate how the autacoid LXB4 influences astrocyte reactivity in the retina under inflammatory cytokine-induced activation and during ocular hypertension. The protective activity of LXB4 was investigated in vivo using the mouse silicone-oil model of chronic ocular hypertension. By employing a range of analytical techniques, including bulk RNA-seq, RNAscope in-situ hybridization, qPCR, and lipidomic analyses, we discovered the formation of lipoxins and expression of the lipoxin pathway in rodents (including the retina and optic nerve), primates (optic nerve), and human brain astrocytes, indicating the presence of this neuroprotective pathway across various species. Findings in the mouse retina identified significant dysregulation of the lipoxin pathway in response to chronic ocular hypertension, leading to an increase in 5-lipoxygenase (5-LOX) activity and a decrease in 15-LOX activity. This dysregulation was coincident with a marked upregulation of astrocyte reactivity. Reactive human brain astrocytes also showed a significant increase in 5-LOX. Treatment with LXB4 amplified the lipoxin biosynthetic pathway by restoring and amplifying the generation of another member of the lipoxin family, LXA4, and mitigated astrocyte reactivity in mouse retinas and human brain astrocytes. In conclusion, the lipoxin pathway is functionally expressed in rodents, primates, and human astrocytes, and is a resident neuroprotective pathway that is downregulated in reactive astrocytes. Novel cellular targets for LXB4's neuroprotective action are inhibition of astrocyte reactivity and restoration of lipoxin generation. Amplifying the lipoxin pathway is a potential target to disrupt or prevent astrocyte reactivity in neurodegenerative diseases, including retinal ganglion cell death in glaucoma.


Assuntos
Glaucoma , Lipoxinas , Hipertensão Ocular , Humanos , Animais , Camundongos , Lipoxinas/farmacologia , Astrócitos , Citocinas , Retina , Modelos Animais de Doenças , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...