Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.557
Filtrar
1.
Commun Biol ; 7(1): 458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622242

RESUMO

Differentiation of adipose progenitor cells into mature adipocytes entails a dramatic reorganization of the cellular architecture to accommodate lipid storage into cytoplasmic lipid droplets. Lipid droplets occupy most of the adipocyte volume, compressing the nucleus beneath the plasma membrane. How this cellular remodeling affects sub-nuclear structure, including size and number of nucleoli, remains unclear. We describe the morphological remodeling of the nucleus and the nucleolus during in vitro adipogenic differentiation of primary human adipose stem cells. We find that cell cycle arrest elicits a remodeling of nucleolar structure which correlates with a decrease in protein synthesis. Strikingly, triggering cytoskeletal rearrangements mimics the nucleolar remodeling observed during adipogenesis. Our results point to nucleolar remodeling as an active, mechano-regulated mechanism during adipogenic differentiation and demonstrate a key role of the actin cytoskeleton in defining nuclear and nucleolar architecture in differentiating human adipose stem cells.


Assuntos
Adipogenia , Citoesqueleto , Humanos , Células Cultivadas , Citoesqueleto/metabolismo , Adipócitos/metabolismo , Gotículas Lipídicas/metabolismo
2.
Opt Express ; 32(7): 12462-12475, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571068

RESUMO

Quantitative phase contrast microscopy (QPCM) can realize high-quality imaging of sub-organelles inside live cells without fluorescence labeling, yet it requires at least three phase-shifted intensity images. Herein, we combine a novel convolutional neural network with QPCM to quantitatively obtain the phase distribution of a sample by only using two phase-shifted intensity images. Furthermore, we upgraded the QPCM setup by using a phase-type spatial light modulator (SLM) to record two phase-shifted intensity images in one shot, allowing for real-time quantitative phase imaging of moving samples or dynamic processes. The proposed technique was demonstrated by imaging the fine structures and fast dynamic behaviors of sub-organelles inside live COS7 cells and 3T3 cells, including mitochondria and lipid droplets, with a lateral spatial resolution of 245 nm and an imaging speed of 250 frames per second (FPS). We imagine that the proposed technique can provide an effective way for the high spatiotemporal resolution, high contrast, and label-free dynamic imaging of living cells.


Assuntos
Aprendizado Profundo , 60704 , Animais , Camundongos , Mitocôndrias , Gotículas Lipídicas
3.
Cell Death Dis ; 15(4): 240, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561354

RESUMO

Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Carcinoma de Células Renais/metabolismo , Gotículas Lipídicas/metabolismo , Estresse do Retículo Endoplasmático/genética , Neoplasias Renais/metabolismo , Lipídeos , Proteínas Repressoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
4.
Nutrients ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612988

RESUMO

The goblet cells of the gastrointestinal tract (GIT) produce glycoproteins called mucins that form a protective barrier from digestive contents and external stimuli. Recent evidence suggests that the milk fat globule membrane (MFGM) and its milk phospholipid component (MPL) can benefit the GIT through improving barrier function. Our objective was to compare the effects of two digested MFGM ingredients with or without dextran sodium sulfate (DSS)-induced barrier stress on mucin proteins. Co-cultured Caco-2/HT29-MTX intestinal cells were treated with in vitro digests of 2%, 5%, and 10% (w/v) MFGM or MPL alone for 6 h or followed by challenge with 2.5% DSS (6 h). Transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran (FD4) permeability measurements were used to measure changes in barrier integrity. Mucin characterization was performed using a combination of slot blotting techniques for secreted (MUC5AC, MUC2) and transmembrane (MUC3A, MUC1) mucins, scanning electron microscopy (SEM), and periodic acid Schiff (PAS)/Alcian blue staining. Digested MFGM and MPL prevented a DSS-induced reduction in secreted mucins, which corresponded to the prevention of DSS-induced increases in FD4 permeability. SEM and PAS/Alcian blue staining showed similar visual trends for secreted mucin production. A predictive bioinformatic approach was also used to identify potential KEGG pathways involved in MFGM-mediated mucosal maintenance under colitis conditions. This preliminary in silico evidence, combined with our in vitro findings, suggests the role of MFGM in inducing repair and maintenance of the mucosal barrier.


Assuntos
Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Humanos , Células CACO-2 , Azul Alciano , Glicoproteínas/farmacologia , Células Epiteliais , Mucinas
5.
Nat Commun ; 15(1): 3213, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615060

RESUMO

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.


Assuntos
Proteínas de Fase Aguda , Proteínas de Transporte , Gotículas Lipídicas , Lipopolissacarídeos , Glicoproteínas de Membrana , Homeostase , Estresse Oxidativo , Triglicerídeos
6.
J Physiol ; 602(5): 891-912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429930

RESUMO

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.


Assuntos
NAD , Proteômica , Humanos , Adulto , Recém-Nascido , NAD/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias Musculares/metabolismo , Gotículas Lipídicas/metabolismo
7.
Colloids Surf B Biointerfaces ; 236: 113819, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428208

RESUMO

Organisms have evolved intracellular micron-sized lipid droplets to carry and protect lipids and hydrophobic minor compounds in the hydrophilic environment of cells. These droplets can be utilized as carriers of hydrophobic therapeutics by taking advantage of their biological functions. Here, we focus on the potential of plant-derived lipid droplets, known as oleosomes, as carriers for hydrophobic therapeutics, such as curcumin. By spectroscopy and confocal microscopy, we demonstrate that the oleosome membrane is permeable to hydrophobic curcumin molecules. Fluorescence recovery after photobleaching shows rapid curcumin diffusion towards oleosomes, with a diffusion time in the range of seconds. Following this, quenching probes and dilatational rheology reveal that part of the loaded curcumin molecules can accumulate at the oleosome interface, and the rest settle in the inner core. Our findings shed light on the loading mechanism of the plant-derived lipid droplets and underscore the significance of molecular localization for understanding the mechanism. This work not only enhances the understanding of the loading process but also shows potential for oleosomes use as lipid carriers.


Assuntos
Curcumina , Gotículas Lipídicas , Fluorescência
8.
Anal Chem ; 96(11): 4709-4715, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457637

RESUMO

The varied functions of lipid droplets, which encompass the regulation of lipid and energy homeostasis, as well as their association with the occurrence of various metabolic diseases, are intricately linked to their dynamic properties. Super-resolution imaging techniques have emerged to decipher physiological processes and molecular mechanisms on the nanoscale. However, achieving long-term dynamic super-resolution imaging faces challenges due to the need for fluorescent probes with high photostability. This paper introduces LD-CF, a "buffering probe" for imaging lipid droplet dynamics using structured illumination microscopy (SIM). The polarity-sensitive LD-CF eliminates background fluorescence with a "cyan filter" strategy, enabling wash-free imaging of lipid droplets. In the fluorescent "off" state outside droplets, the probes act as a "buffering pool", replacing photobleached probes inside droplets and enabling photostable long-term SIM imaging. With this probe, three modes of lipid droplet fusion were observed, including the discovery of fusion from large to small lipid droplets. Fluorescence intensity tracking also revealed the direction of lipid transport during the lipid droplet fusion.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Corantes Fluorescentes/metabolismo , Gotículas Lipídicas/metabolismo , Microscopia de Fluorescência/métodos , Transporte Biológico , Lipídeos
9.
Anal Chim Acta ; 1299: 342422, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499425

RESUMO

BACKGROUND: Ferroptosis, as a novel form of cell death, is becoming one of the hot topics in cancer treatment research. It differs from necrosis and autophagy in that it involves the accumulation of lipid peroxides and is triggered by iron dependency. Recent studies have suggested that this mechanism may alter the viscosity or structure of lipid droplets (LDs). The relationship between LDs viscosity and ferroptosis remains an active area of research with limited reports at present. Additionally, there is a lack of effective anticancer drugs targeting the ferroptosis pathway to promote ferroptosis in tumour cells. Therefore, the development of tools to detect viscosity changes during ferroptosis and targeted therapeutic strategies is of great significance. RESULTS: By coupling 1,3-indandione with naphthalimide, including decamethylamine as a LDs recognition group, we designed and synthesized an environmental fluorescent probe that induces intramolecular charge transfer (TICT) effects. Notably, the diffusion and transport of intracellular substances may be affected in highly viscous environments. Under such conditions, intracellular iron ions may accumulate, leading to peroxide production and cellular damage, which can trigger ferroptosis. Therefore, WD-1 achieved excellent in situ bioimaging of LDs targeting and its viscosity during ferroptosis in HeLa cells and zebrafish. Furthermore, it was observed that WD-1 effectively differentiated between malignant and normal cells during this process, highlighting its potential significance in distinguishing cellular states. In addition, we used the antitumour drug paclitaxel to study ferroptosis in cancer cells. These findings not only provide an excellent tool for the development of the ferroptosis response, but also are crucial for understanding the biological properties of LDs during the ferroptosis response. SIGNIFICANCE AND NOVELTY: Based on a powerful tool of fluorescent probe with in vivo bioimaging, we developed WD-1 to track the impact of paclitaxel on the process of ferroptosis in living cells. Therefore, we preliminarily believe that paclitaxel may affect the occurrence of ferroptosis and control apoptosis in cancer cells. These findings not only serve as an exceptional tool for advancing our understanding of the ferroptosis response, but furthermore play a vital role in comprehending the biological characteristics of LDs in relation to ferroptosis.


Assuntos
Ferroptose , Gotículas Lipídicas , Humanos , Animais , Corantes Fluorescentes , Células HeLa , Viscosidade , Peixe-Zebra , Ferro , Paclitaxel/farmacologia
10.
World J Gastroenterol ; 30(7): 728-741, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515944

RESUMO

BACKGROUND: Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvß3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM: To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS: SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 µg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvß3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS: The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION: MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVß3/5.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Pancreatite , Camundongos , Animais , Fator VIII , Pancreatite/induzido quimicamente , Pancreatite/complicações , Doença Aguda , Hepatócitos/metabolismo , Autofagia , Família de Proteínas EGF , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia
11.
Anal Chim Acta ; 1297: 342330, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438225

RESUMO

Cellular micro-environment analysis via fluorescence probe has become a powerful method to explore the early-stage cancer diagnosis and pathophysiological process of relevant diseases. The polarity change of intracellular lipid droplets (LDs) is closely linked with disorders or diseases, which result in various physiological and pathological processes. However, the efficient design strategy for lipid droplet polarity probes with high sensitivity is lacking. To overcome this difficulty, two kinds of LDs-targeting and polarity-sensitive fluorescent probes containing carbazole and siloxane groups were rationally designed and synthesized. With the carbazole-based rotor and bridge-like siloxanes, two probes (P1 and P2) behave high sensitivity to polarity changes and show different fluorescent intensity in normal and cancer cells. Notably, polysiloxanes groups promoted the response sensitivity of the probes dramatically for the polymeric microenvironment. In addition, due to the polarity changes of LDs in cancer cells, the distinct fluorescent intensities in different channels of laser scanning confocal microscope were observed between NHA cell and U87 cells. This work could offer an opportunity to monitor the dynamic behaviors of LDs and further provide a powerful tool to be potentially applied in the early-stage diagnosis of cancer.


Assuntos
Gotículas Lipídicas , Neoplasias , Polímeros , Siloxanas , Carbazóis , Corantes Fluorescentes , Neoplasias/diagnóstico por imagem
12.
J Cell Biol ; 223(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466168

RESUMO

The secreted ApoE protein is a major regulator of lipid transport between brain cells. In this issue, Windham et al. (https://doi.org/10.1083/jcb.202305003) uncover a novel intracellular role for ApoE at the lipid droplet surface, where it regulates lipid droplet size and composition.


Assuntos
Apolipoproteínas E , Gotículas Lipídicas , Apolipoproteínas E/metabolismo , Transporte Biológico , Gotículas Lipídicas/metabolismo , Humanos , Animais
13.
Anal Chem ; 96(10): 4013-4022, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426215

RESUMO

Lipid droplets (LDs) and lysosomes play key roles in autophagy and cell apoptosis, and the discriminative visualization of the two organelles and simultaneously of autophagy and apoptosis is very helpful to understand their internal relationships. However, fluorescent probes that can concurrently achieve these tasks are not available currently. Herein, we delicately fabricate a robust probe CAQ2 for multiple tasks: illumination of LDs and lysosomes in dual emission colors as well as discriminative visualization of cell apoptosis and autophagy. The probe exhibited both lipophilic and basic properties and displayed different emission colors in neutral and protonated forms; thus, LDs and lysosomes emitted blue and red fluorescence colors, respectively. Because of the lysosomal acidification during autophagy, CAQ2 detected autophagy with evidently enhanced red emission. Because of the lysosomal alkalization during apoptosis, CAQ2 imaged apoptosis with a drastically decreased red fluorescence intensity. With the robust probe, the autophagy under starvation and lipidless conditions was visualized, and the apoptosis induced by H2O2, ultraviolet (UV) irradiation, and rotenone treatment was successfully observed. The efficient detoxification of Na2S against rotenone treatment was successfully revealed.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Peróxido de Hidrogênio , Rotenona , Lisossomos , Apoptose , Autofagia
14.
Bioresour Technol ; 399: 130571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518875

RESUMO

The extraction of oil from oilseeds in intact oleosomes is one of the suggested processes that could replace the extraction of oil by pressing and solvent extraction, being milder, environmentally less impactful and potentially more efficient in its use of resources. This study assesses the latter using an exergy assessment of oleosome extraction for food emulsions. The contribution of each part of the process to the overall impact was investigated. Based on current lab-scale data, oleosome extraction has nearly twice the exergy loss compared to the industrial process of oil extraction and industrial assembly of emulsions. The exergy losses of the lab-scale oleosome extraction are currently dominated by the chemical exergy associated with product loss during the separation of oleosomes from the rest of the biomass. This loss is expected to significantly decrease when upscaled to industrial scale. When substituted with industrial material efficiencies, the total exergy loss decreased to nearly a quarter of the original loss, representing oleosome extraction as a potentially more effective and environment-friendly option.


Assuntos
Capsicum , Gotículas Lipídicas , Emulsões , Cânfora , Mentol , Verduras , Sementes
15.
Nature ; 628(8006): 154-161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480892

RESUMO

Several genetic risk factors for Alzheimer's disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer's disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer's disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer's disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aß induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer's disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Gotículas Lipídicas , Microglia , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Triglicerídeos , Proteínas tau , Meios de Cultivo Condicionados , Fosforilação , Predisposição Genética para Doença
16.
Org Biomol Chem ; 22(14): 2739-2743, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38497223

RESUMO

This article describes the synthesis and photophysical properties of Aggregation-Induced Emission (enhancement) luminogens derivated from CinNaphts dyes. These fluorophores can be obtained in good yields in a single SNAr step of a fluorinated CinNapht derivative by incorporating hindered aromatic amines. They exhibit AIE(E) behavior associated with solid-state fluorescence covering an emission range from 563 to 722 nm. One carbazole derivative demonstrates a remarkable efficiency in imaging lipid droplets in living cells through an original photophysical mechanism.


Assuntos
Gotículas Lipídicas , Imagem Óptica , Imagem Óptica/métodos , Corantes Fluorescentes
17.
Cancer Immunol Immunother ; 73(5): 78, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554152

RESUMO

BACKGROUND: Lipid droplets (LDs) as major lipid storage organelles are recently reported to be innate immune hubs. Perilipin-3 (PLIN3) is indispensable for the formation and accumulation of LDs. Since cancer patients show dysregulated lipid metabolism, we aimed to elaborate the role of LDs-related PLIN3 in oral squamous cell carcinoma (OSCC). METHODS: PLIN3 expression patterns (n = 87), its immune-related landscape (n = 74) and association with B7-H2 (n = 51) were assessed by immunohistochemistry and flow cytometry. Real-time PCR, Western blot, Oil Red O assay, immunofluorescence, migration assay, spheroid-forming assay and flow cytometry were performed for function analysis. RESULTS: Spotted LDs-like PLIN3 staining was dominantly enriched in tumor cells than other cell types. PLIN3high tumor showed high proliferation index with metastasis potential, accompanied with less CD3+CD8+ T cells in peripheral blood and in situ tissue, conferring immunosuppressive microenvironment and shorter postoperative survival. Consistently, PLIN3 knockdown in tumor cells not only reduced LD deposits and tumor migration, but benefited for CD8+ T cells activation in co-culture system with decreased B7-H2. An OSCC subpopulation harbored PLIN3highB7-H2high tumor showed more T cells exhaustion, rendering higher risk of cancer-related death (95% CI 1.285-6.851). CONCLUSIONS: LDs marker PLIN3 may be a novel immunotherapeutic target in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Oncogenes , Perilipina-3/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
18.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542126

RESUMO

Lipophagy is a cellular pathway targeting the lysosomal degradation of lipid droplets, playing a role in promoting lipid turnover and renewal. Abnormal lipophagy processes can lead to the occurrence and development of non-alcoholic fatty liver disease (NAFLD), characterized by the deposition of lipid droplets (LDs) in the liver. The importance of exercise training in preventing and improving NAFLD has been well-established, but the exact mechanisms remain unclear. Recent research findings suggest that lipophagy may serve as a crucial hub for liver lipid turnover under exercise conditions. Exercise may alleviate hepatic lipid accumulation and mitigate inflammatory responses and fibrosis through lipophagy, thereby improving the onset and progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Autofagia/fisiologia , Gotículas Lipídicas/metabolismo , Terapia por Exercício , Lipídeos
19.
J Mater Chem B ; 12(12): 3022-3030, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426244

RESUMO

Lipid droplets (LDs) are cytoplasmic lipid-rich organelles with important roles in lipid storage and metabolism, cell signaling and membrane biosynthesis. Additionally, multiple diseases, such as obesity, fatty liver, cardiovascular diseases and cancer, are related to the metabolic disorders of LDs. In various cancer cells, LD accumulation is associated with resistance to cell death, reduced effectiveness of chemotherapeutic drugs, and increased proliferation and aggressiveness. In this work, we present a new viscosity-sensitive, green-emitting BODIPY probe capable of distinguishing between ordered and disordered lipid phases and selectively internalising into LDs of live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM), we demonstrate that LDs in live cancer (A549) and non-cancer (HEK 293T) cells have vastly different microviscosities. Additionally, we quantify the microviscosity changes in LDs under the influence of DNA-damaging chemotherapy drugs doxorubicin and etoposide. Finally, we show that doxorubicin and etoposide have different effects on the microviscosities of LDs in chemotherapy-resistant A549 cancer cells.


Assuntos
Compostos de Boro , Gotículas Lipídicas , Neoplasias , Gotículas Lipídicas/metabolismo , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/metabolismo , Etoposídeo/metabolismo , Lipídeos , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
20.
Genomics ; 116(2): 110817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431031

RESUMO

Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.


Assuntos
Arginina , Gotículas Lipídicas , Animais , Bovinos , Perilipina-2/genética , Perilipina-2/química , Perilipina-2/metabolismo , Arginina/genética , Arginina/metabolismo , Gotículas Lipídicas/metabolismo , Mutação , Adipócitos/metabolismo , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...