Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.401
Filtrar
1.
Zoolog Sci ; 41(1): 77-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587520

RESUMO

Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursor for producing significant androgens such as11-ketotestosterone, 5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.


Assuntos
Androgênios , Testosterona , Masculino , Animais , Feminino , Ovário , Testículo , Vertebrados
2.
Zoolog Sci ; 41(1): 105-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587523

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.


Assuntos
Relógios Circadianos , Melatonina , Animais , Melatonina/farmacologia , Antioxidantes , Vertebrados , Mamíferos
3.
Zoolog Sci ; 41(1): 132-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587526

RESUMO

Vertebrates have expanded their habitats during evolution, which accompanies diversified routes for water acquisition. Water is acquired by oral intake and subsequent absorption by the intestine in terrestrial and marine animals which are subjected to constant dehydration, whereas most water is gained osmotically across body surfaces in freshwater animals. In addition, a significant amount of water, called metabolic water, is produced within the body by the oxidation of hydrogen in organic substrates. The importance of metabolic water production as a strategy for water acquisition has been well documented in desert animals, but its role has attracted little attention in marine animals which also live in a dehydrating environment. In this article, the author has attempted to reevaluate the role of metabolic water production in body fluid regulation in animals inhabiting desiccating environments. Because of the exceptional ability of their kidney, marine mammals are thought to typically gain water by drinking environmental seawater and excreting excess NaCl in the urine. On the other hand, it is established that marine teleosts drink seawater to enable intestinal water and ion absorption, and the excess NaCl is excreted by branchial ionocytes. In addition to the oral route, we suggest through experiments using eels that water production by lipid metabolism is an additional route for water acquisition when they encounter seawater. It seems that metabolic water production contributes to counteract dehydration before mechanisms for water regulation are reversed from excretion in freshwater to acquisition in seawater.


Assuntos
Desidratação , Água , Animais , Cloreto de Sódio , Água do Mar , Vertebrados , Mamíferos
4.
Proc Natl Acad Sci U S A ; 121(15): e2316106121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564638

RESUMO

The axial columns of the earliest limbed vertebrates show distinct patterns of regionalization as compared to early tetrapodomorphs. Included among their novel features are sacral ribs, which provide linkage between the vertebral column and pelvis, contributing to body support and propulsion by the hindlimb. Data on the axial skeletons of the closest relatives of limbed vertebrates are sparce, with key features of specimens potentially covered by matrix. Therefore, it is unclear in what sequence and under what functional context specializations in the axial skeletons of tetrapods arose. Here, we describe the axial skeleton of the elpistostegalian Tiktaalik roseae and show that transformations to the axial column for head mobility, body support, and pelvic fin buttressing evolved in finned vertebrates prior to the origin of limbs. No atlas-axis complex is observed; however, an independent basioccipital-exoccipital complex suggests increased mobility at the occipital vertebral junction. While the construction of vertebrae in Tiktaalik is similar to early tetrapodomorphs, its ribs possess a specialized sacral domain. Sacral ribs are expanded and ventrally curved, indicating likely attachment to the expanded iliac blade of the pelvis by ligamentous connection. Thus, the origin of novel rib types preceded major alterations to trunk vertebrae, and linkage between pelvic fins and axial column preceded the origin of limbs. These data reveal an unexpected combination of post-cranial skeletal characters, informing hypotheses of body posture and movement in the closest relatives of limbed vertebrates.


Assuntos
Evolução Biológica , Fósseis , Animais , Vertebrados , Osso e Ossos , Extremidade Inferior
5.
Curr Biol ; 34(7): R271-R272, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593768

RESUMO

Taste is a sense that detects information about nutrients and toxins in foods. Of the five basic taste qualities, bitterness is associated with the detection of potentially harmful substances like plant alkaloids. In bony vertebrates, type 2 taste receptors (T2Rs), which are G-protein-coupled receptors (GPCRs), act as bitter taste receptors1,2. In vertebrates, six GPCR gene families are described as chemosensory receptor genes, encoding taste receptor families (T1Rs and T2Rs) and olfactory receptor families (ORs, V1Rs, V2Rs, and TAARs). These families of receptors have been found in all major jawed vertebrate lineages, except for the T2Rs, which are confined to bony vertebrates3. Therefore, T2Rs are believed to have emerged later than the other chemosensory receptor genes in the bony vertebrate lineage. So far, only the genomes of two cartilaginous fish species have been mined for TAS2R genes, which encode T2Rs4. Here, we identified novel T2Rs in elasmobranchs, namely selachimorphs (sharks) and batoids (rays, skates, and their close relatives) by an exhaustive search covering diverse cartilaginous fishes. Using functional and mRNA expression analyses, we demonstrate that their T2Rs are expressed in the oral taste buds and contribute to the detection of bitter compounds. This finding indicates the early origin of T2Rs in the common ancestor of jawed vertebrates.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Animais , Paladar/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Evolução Biológica , Peixes/genética , Percepção Gustatória
6.
Sci Rep ; 14(1): 7690, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565870

RESUMO

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Assuntos
Ciona intestinalis , Animais , Humanos , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Células HEK293 , Transdução de Sinais , Vertebrados/metabolismo , Proteínas de Transporte/metabolismo
7.
Zootaxa ; 5419(1): 85-111, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480336

RESUMO

Siphonostomatoida (Copepoda) consists of 40 families of symbionts infecting vertebrates (17 families) and invertebrates (23 families) found mostly in marine habitats. In 2004, a list was compiled of all the reported families, genera and species symbiotic with marine fish in Southern African waters. Since this was done 20 years ago, it is necessary to re-evaluate the progress made in 20 years regarding our knowledge of the diversity of marine siphonostomatoids. To assess the current knowledge, the 2004 list was updated with reports published since 2004 as well as with new host and locality records including species with changes in taxonomy. Additionally, species collected but unreported as well as species previously reported but with new hosts and/or localities were also added. Currently reports include 16 families, 75 genera and 234 species. However, amongst these are reports of only two families (3 species) infecting invertebrates. Even though the report includes 71 additional species it still compares poorly with the about 2 274 accepted species, especially regarding species infecting invertebrates. Considering South Africas wealth in possible marine host species, examination of more hosts (especially marine teleosts and invertebrates) will definitely result in an increase in the current knowledge about the biodiversity of marine siphonostomatoids off Southern Africa.


Assuntos
Copépodes , Animais , Biodiversidade , Invertebrados , África Austral , Vertebrados
8.
Glob Chang Biol ; 30(3): e17253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519878

RESUMO

Vertebrate species worldwide are currently facing significant declines in many populations. Although we have gained substantial knowledge about the direct threats that affect individual species, these threats only represent a fraction of the broader vertebrate threat profile, which is also shaped by species interactions. For example, threats faced by prey species can jeopardize the survival of their predators due to food resource scarcity. Yet, indirect threats arising from species interactions have received limited investigation thus far. In this study, we investigate the indirect consequences of anthropogenic threats on biodiversity in the context of European vertebrate food webs. We integrated data on trophic interactions among over 800 terrestrial vertebrates, along with their associated human-induced threats. We quantified and mapped the vulnerability of various components of the food web, including species, interactions, and trophic groups to six major threats: pollution, agricultural intensification, climate change, direct exploitation, urbanization, and invasive alien species and diseases. Direct exploitation and agricultural intensification were two major threats for terrestrial vertebrate food webs: affecting 34% and 31% of species, respectively, they threaten 85% and 69% of interactions in Europe. By integrating network ecology with threat impact assessments, our study contributes to a better understanding of the magnitude of anthropogenic impacts on biodiversity.


Assuntos
Cadeia Alimentar , Vertebrados , Animais , Humanos , Ecologia , Biodiversidade , Espécies Introduzidas , Europa (Continente) , Ecossistema
9.
Sci Rep ; 14(1): 7250, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538655

RESUMO

Animal evolution is driven by random mutations at the genome level. However, it has long been suggested that there exist physical constraints which limit the set of possible outcomes. In craniate evolution, it has been observed that head features, notably in the genus homo, can be ordered in a morphological diagram such that, as the brain expands, the head rocks more forward, face features become less prognathous and the mouth tends to recede. One school of paleontologists suggests that this trend is wired somewhere structurally inside the anatomy, and that random modifications of genes push up or down animal forms along a pre-determined path. No actual experiment has been able to settle the dispute. I present here an experiment of electric stimulation of the head in the chicken embryo which is able to enhance the magnitude of tension forces during development. This experimental intervention causes a correlated brain shrinkage and rotatory movement of the head, congruent with tissue texture, which proves that head dilation and flexure are intimately linked. Numerical modelling explains why the brain curls when it dilates. This gives support to the idea that there exists, in the texture of the vertebrate embryo, a latent dynamic pattern for the observed paleontological trends in craniates towards homo, a concept known as Inside story.


Assuntos
Evolução Biológica , Galinhas , Animais , Humanos , Embrião de Galinha , Vertebrados , Desenvolvimento Embrionário , Estimulação Elétrica
10.
Surg Radiol Anat ; 46(3): 285-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478075

RESUMO

Intracranial arterial anatomy is lacking for most mammalian and non-mammalian model species, especially concerning the origin of the basilar artery (BA). Enhancing the knowledge of this anatomy can improve animal models and help understanding anatomical variations in humans. We have studied encephalic arteries in three different species of birds and eight different species of mammals using formalin-fixed brains injected with arterial red latex. Our results and literature analysis indicate that, for all vertebrates, the internal carotid artery (ICA) supplies the brain and divides into two branches: a cranial and a caudal branch. The difference between vertebrates lies in the caudal branch of the ICA. For non-mammalian, the caudal branch is the origin of the BA, and the vertebral artery (VA) is not involved in brain supply. For mammals, the VA supplies encephalic arteries in two different ways. In the first type of organization, mostly found in ungulates, the carotid rete mirabile supplies the encephalic arteries, the caudal branch is the origin of the BA, and the VA is indirectly involved in carotid rete mirabile blood supply. The second type of encephalic artery organization for mammals is the same as in humans. The caudal branch of the ICA serves as the posterior communicating artery, and the BA originates from both VAs. We believe that knowledge of comparative anatomy of encephalic arteries contributes to a better understanding of animal models applicable to surgical or radiological techniques. It improves the understanding of rare encephalic variations that may be present in humans.


Assuntos
Artéria Basilar , Encéfalo , Animais , Humanos , Artéria Basilar/anatomia & histologia , Encéfalo/anatomia & histologia , Artérias Carótidas/anatomia & histologia , Vertebrados , Mamíferos , Artéria Carótida Interna/anatomia & histologia , Artérias Cerebrais/anatomia & histologia
11.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502060

RESUMO

Conserved noncoding elements (CNEs) are DNA sequences located outside of protein-coding genes that can remain under purifying selection for up to hundreds of millions of years. Studies in vertebrate genomes have revealed that most CNEs carry out regulatory functions. Notably, many of them are enhancers that control the expression of homeodomain transcription factors and other genes that play crucial roles in embryonic development. To further our knowledge of CNEs in other parts of the animal tree, we conducted a large-scale characterization of CNEs in more than 50 genomes from three of the main branches of the metazoan tree: Cnidaria, Mollusca, and Arthropoda. We identified hundreds of thousands of CNEs and reconstructed the temporal dynamics of their appearance in each lineage, as well as determining their spatial distribution across genomes. We show that CNEs evolve repeatedly around the same genes across the Metazoa, including around homeodomain genes and other transcription factors; they also evolve repeatedly around genes involved in neural development. We also show that transposons are a major source of CNEs, confirming previous observations from vertebrates and suggesting that they have played a major role in wiring developmental gene regulatory mechanisms since the dawn of animal evolution.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Vertebrados , Animais , Sequência Conservada/genética , Vertebrados/genética , Sequência de Bases , Fatores de Transcrição/genética , Evolução Molecular
12.
Sci Adv ; 10(13): eadi9035, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552007

RESUMO

The pharyngeal endoderm, an innovation of deuterostome ancestors, contributes to pharyngeal development by influencing the patterning and differentiation of pharyngeal structures in vertebrates; however, the evolutionary origin of the pharyngeal organs in vertebrates is largely unknown. The endostyle, a distinct pharyngeal organ exclusively present in basal chordates, represents a good model for understanding pharyngeal organ origins. Using Stereo-seq and single-cell RNA sequencing, we constructed aspatially resolved single-cell atlas for the endostyle of the ascidian Styela clava. We determined the cell composition of the hemolymphoid region, which illuminates a mixed ancestral structure for the blood and lymphoid system. In addition, we discovered a cluster of hair cell-like cells in zone 3, which has transcriptomic similarity with the hair cells of the vertebrate acoustico-lateralis system. These findings reshape our understanding of the pharynx of the basal chordate and provide insights into the evolutionary origin of multiplexed pharyngeal organs.


Assuntos
Urocordados , Animais , Urocordados/genética , Faringe , Vertebrados , Evolução Biológica , Diferenciação Celular
13.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
14.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38428420

RESUMO

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Animais , Humanos , Proteínas de Membrana/metabolismo , Complexo de Golgi/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Vertebrados
15.
Evol Dev ; 26(2): e12474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425004

RESUMO

The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.


Assuntos
Peixes , Telencéfalo , Animais , Larva , Telencéfalo/anatomia & histologia , Vertebrados , Morfogênese
16.
Anim Cogn ; 27(1): 27, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530456

RESUMO

Inhibitory control (IC) plays a central role in behaviour control allowing an individual to resist external lures and internal predispositions. While IC has been consistently investigated in humans, other mammals, and birds, research has only recently begun to explore IC in other vertebrates. This review examines current literature on teleost fish, focusing on both methodological and conceptual aspects. I describe the main paradigms adopted to study IC in fish, identifying well-established tasks that fit various research applications and highlighting their advantages and limitations. In the conceptual analysis, I identify two well-developed lines of research with fish examining IC. The first line focuses on a comparative approach aimed to describe IC at the level of species and to understand the evolution of interspecific differences in relation to ecological specialisation, brain size, and factors affecting cognitive performance. Findings suggest several similarities between fish and previously studied vertebrates. The second line of research focuses on intraspecific variability of IC. Available results indicate substantial variation in fish IC related to sex, personality, genetic, age, and phenotypic plasticity, aligning with what is observed with other vertebrates. Overall, this review suggests that although data on teleosts are still scarce compared to mammals, the contribution of this group to IC research is already substantial and can further increase in various disciplines including comparative psychology, cognitive ecology, and neurosciences, and even in applied fields such as psychiatry research.


Assuntos
Peixes , Vertebrados , Animais , Humanos , Mamíferos , Aves , Personalidade
17.
Proc Biol Sci ; 291(2019): 20232258, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531402

RESUMO

Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition.


Assuntos
Evolução Biológica , Fósseis , Animais , Peixes/anatomia & histologia , Vertebrados/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia
18.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474250

RESUMO

Smiliogastrinae are recognized for their high nutritional and ornamental value. In this study, we employed high-throughput sequencing technology to acquire the complete mitochondrial genome sequences of Dawkinsia filamentosa and Pethia nigrofasciata. The gene composition and arrangement order in these species were similar to those of typical vertebrates, comprising 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region. The mitochondrial genomes of D. filamentosa and P. nigrofasciata measure 16,598 and 16,948 bp, respectively. Both D. filamentosa and P. nigrofasciata exhibit a significant preference for AT bases and an anti-G bias. Notably, the AT and GC skew values of the ND6 gene fluctuated markedly, suggesting that the selection and mutation pressures on this gene may differ from those affecting other genes. Phylogenetic analysis, based on the complete mitochondrial genomes of 23 Cyprinidae fishes, revealed that D. filamentosa is closely related to the sister group comprising Dawkinsia denisonii and Sahyadria chalakkudiensis. Similarly, P. nigrofasciata forms a sister group with Pethia ticto and Pethia stoliczkana.


Assuntos
Cyprinidae , Genoma Mitocondrial , Animais , Filogenia , DNA Mitocondrial/genética , Vertebrados/genética , RNA de Transferência/genética , Cyprinidae/genética , Genes Mitocondriais
19.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441487

RESUMO

Ascidian embryos have been studied since the birth of experimental embryology at the end of the 19th century. They represent textbook examples of mosaic development characterized by a fast development with very few cells and invariant cleavage patterns and lineages. Ascidians belong to tunicates, the vertebrate sister group, and their study is essential to shed light on the emergence of vertebrates. Importantly, deciphering developmental gene regulatory networks has been carried out mostly in two of the three ascidian orders, Phlebobranchia and Stolidobranchia. To infer ancestral developmental programs in ascidians, it is thus essential to carry out molecular embryology in the third ascidian order, the Aplousobranchia. Here, we present genomic resources for the colonial aplousobranch Clavelina lepadiformis: a transcriptome produced from various embryonic stages, and an annotated genome. The assembly consists of 184 contigs making a total of 233.6 Mb with a N50 of 8.5 Mb and a L50 of 11. The 32,318 predicted genes capture 96.3% of BUSCO orthologs. We further show that these resources are suitable to study developmental gene expression and regulation in a comparative framework within ascidians. Additionally, they will prove valuable for evolutionary and ecological studies.


Assuntos
Urocordados , Animais , Urocordados/genética , Vertebrados/genética , Genoma , Genômica , Evolução Biológica
20.
Sci Data ; 11(1): 191, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346970

RESUMO

Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Mamíferos , Vertebrados , Plantas , África
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...